What value would you like?
U{n} = (5x⁵ - 75x⁴ + 425x³ - 1125x² + 1394x - 336)/24
U{1} = 12
U{2} = 13
U{3} = 14
U{4} = 15
U{5} = 16
U{6} = 42
U{50} = 47,672,161
However, I suspect your teacher wants the much simpler sequence U{n} = n + 11
→ U{50} = 50 + 11 = 61
------------------------------
This shows the problem with extrapolating data beyond given data - there are infinitely many polynomials which will give the sequence so far but will diverge for values outside the given range.
55,73and 110
By figuring out the rule on which the sequence is based. I am pretty sure the last number is supposed to be 125 - in that case, this is the sequence of cubic numbers: 13, 23, 33, etc.
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.
The given sequence is an arithmetic sequence where each term increases by 4. The first term (a) is 13, and the common difference (d) is 4. The nth term can be found using the formula: ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = 13 + (n-1) \cdot 4 = 4n + 9 ).
3
55,73and 110
-13
By figuring out the rule on which the sequence is based. I am pretty sure the last number is supposed to be 125 - in that case, this is the sequence of cubic numbers: 13, 23, 33, etc.
The sequence n plus 3 can be represented as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... The 10th term of this sequence can be found by substituting n = 10 into the formula, which gives us 10 + 3 = 13. Therefore, the 10th term of the sequence is 13.
The answer is 15 because the pattern is subtract one, add two
-47
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.
The given sequence is an arithmetic sequence where each term increases by 4. The first term (a) is 13, and the common difference (d) is 4. The nth term can be found using the formula: ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = 13 + (n-1) \cdot 4 = 4n + 9 ).
To find the nth term of a sequence, we first need to determine the pattern or rule that governs the sequence. In this case, the sequence appears to be increasing by adding consecutive odd numbers: 3, 6, 9, 12, and so on. Therefore, the nth term formula for this sequence is Tn = 3n^2 + n. So, the nth term for the sequence 4, 7, 13, 22, 34 is Tn = 3n^2 + n.
PRIME
3
The 'n'th term is [ 13 + 5n ].