answersLogoWhite

0

The sequence n plus 3 can be represented as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... The 10th term of this sequence can be found by substituting n = 10 into the formula, which gives us 10 + 3 = 13. Therefore, the 10th term of the sequence is 13.

User Avatar

ProfBot

2mo ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
More answers

4 5 6 7 8 9 10 11 12 13

User Avatar

Wiki User

12y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is the 10th term of the sequence of n plus 3?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

What is the 12th term in a geometric sequence that has a first term of 6 and a common ratio of 3?

It is 1062882.


How do you find the nth term in a sequence?

Finding the nth term is much simpler than it seems. For example, say you had the sequence: 1,4,7,10,13,16 Sequence 1 First we find the difference between the numbers. 1 (3) 4 (3) 7 (3) 10 (3) 13 (3) 16 The difference is the same: 3. So the start of are formula will be 3n. If it was 3n, the sequence would be 3,6,9,12,15,18 Sequence 2 But this is not our sequence. Notice that each number on sequence 2 is 2 more than sequence 1. this means are final formula will be: 3n+1 Test it out, it works!


What is the sum of first six terms of a sequence whose nth term is 8 - n?

nth term is 8 - n. an = 8 - n, so the sequence is {7, 6, 5, 4, 3, 2,...} (this is a decreasing sequence since the successor term is smaller than the nth term). So, the sum of first six terms of the sequence is 27.


What is the nth term of the arithmetic sequence 7 5 3 1?

To find the nth term of an arithmetic sequence, you need to first identify the common difference between consecutive terms. In this case, the common difference is -2 (subtract 2 from each term to get the next term). The formula to find the nth term of an arithmetic sequence is: a_n = a_1 + (n-1)d, where a_n is the nth term, a_1 is the first term, n is the term number, and d is the common difference. Plugging in the values from the sequence (a_1=7, d=-2), the nth term formula becomes: a_n = 7 + (n-1)(-2) = 9 - 2n.


How do you write 3 to the power of n plus 2 plus 3 to the power of n as a single term?

3^n+2+3^n = 6^n+2 *'to the power of' can be represented with this symbol ^ .