2
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
3
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
An equation for a sideways parabola can be expressed in the form ( y^2 = 4px ) for a parabola that opens to the right, or ( y^2 = -4px ) for one that opens to the left. Here, ( p ) represents the distance from the vertex to the focus. The vertex of the parabola is at the origin (0,0), and the axis of symmetry is horizontal. If the vertex is not at the origin, the equation can be adjusted to ( (y-k)^2 = 4p(x-h) ), where ((h, k)) is the vertex.
f(x)=x^2
please help
0,0
-2
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
3
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
We will be able to identify the answer if we have the equation. We can only check on the coordinates from the given vertex.
The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5. The coefficient of the squared term in the parabola's equation is -3.
5
2
The coordinates will be at the point of the turn the parabola which is its vertex.
The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1. The coefficient of the squared expression in the parabola's equation is -6.