Any number of the form 18*k where k is an integer.
Chat with our AI personalities
All numbers divisible by 3 are NOT divisible by 9. As an example, 6, which is divisible by 3, is not divisible by 9. However, all numbers divisible by 9 are also divisible by 3 because 9 is divisible by 3.
All numbers divisible by 9 are divisible by 3; since 9 = 3 x 3 all multiples of 9 are also multiples of 3. However, all numbers divisible by 3 are not divisible by 9, eg 6 = 2 x 3 but 6 is not divisible by 9 (since 6 is not a multiple of 9) - it only takes one counter example to disprove a theory.
To determine which number is divisible by 3, 6, and 9, we need to check if the sum of the digits of each number is divisible by 3. For 369: 3+6+9 = 18, which is divisible by 3, 6, and 9. Therefore, 369 is divisible by 3, 6, and 9. For 246: 2+4+6 = 12, which is divisible by 3 but not by 6 or 9. Therefore, 246 is divisible by 3 but not by 6 or 9. For 468: 4+6+8 = 18, which is divisible by 3, 6, and 9. Therefore, 468 is divisible by 3, 6, and 9. For 429: 4+2+9 = 15, which is divisible by 3 but not by 6 or 9. Therefore, 429 is divisible by 3 but not by 6 or 9. Therefore, the numbers 369 and 468 are divisible by 3, 6, and 9.
Yes it is divisible by 2, 3, 6, and 9
All whole numbers are divisible by 1. Numbers are divisible by 2 if they end in 2, 4, 6, 8 or 0. Numbers are divisible by 3 if the sum of their digits is divisible by 3. Numbers are divisible by 4 if the last two digits of the number are divisible by 4. Numbers are divisible by 5 if the last digit of the number is either 5 or 0. Numbers are divisible by 6 if they are divisible by 2 and 3. Numbers are divisible by 9 if the sum of their digits is equal to 9 or a multiple of 9. Numbers are divisible by 10 if the last digit of the number is 0.