TIme period T is given by the expression 2pi./l/g
So T is inversely related to the g value at the place
At Muree value of aceeleration due to gravity g is less than that at Karachi. Hence the result
The period of a pendulum (for short swings) is about 2 PI (L/g)1/2. The gravity on the moon is less than that on Earth by a factor of six, so the period of the pendulum on the moon would be greater, i.e. slower, by about a factor of 2.5.
The time of swing of a pendulum is T = 2π √ (l/g) where l is the length of the pendulum. As T ∝√l (Time is directly proportional to the square root of l) then, the longer the pendulum, the greater is the period. Therefore longer pendulums have longer periods than shorter pendulums.
A longer pendulum has a longer period.
Height does not affect the period of a pendulum.
Actually, the period of a pendulum does depend slightly on the amplitude. But at low amplitudes, it almost doesn't depend on the amplitude at all. This is related to the fact that in such a case, the restoring force - the force that pulls the pendulum back to its center position - is proportional to the displacement. That is, if the pendulum moves away further, the restoring force will also be greater.
A pendulum with a longer length will move slower than a pendulum with a shorter length, given that both are released from the same height. This is because the longer pendulum has a greater period of oscillation, meaning it takes more time to complete one full swing compared to a shorter pendulum.
No, the force of gravity does not affect the period of a pendulum. The period of a pendulum is determined by the length of the pendulum and the acceleration due to gravity. Changing the force of gravity would not change the period as long as the length of the pendulum remains constant.
Yes, the mass of the pendulum can affect the period of its swing. A heavier mass may have a longer period compared to a lighter mass due to changes in the pendulum's inertia and the force required to move it.
The period of a simple pendulum would be longer on the moon compared to the Earth. This is because the acceleration due to gravity is weaker on the moon, resulting in slower oscillations of the pendulum.
The period of a pendulum (for short swings) is about 2 PI (L/g)1/2. The gravity on the moon is less than that on Earth by a factor of six, so the period of the pendulum on the moon would be greater, i.e. slower, by about a factor of 2.5.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
The time of swing of a pendulum is T = 2π √ (l/g) where l is the length of the pendulum. As T ∝√l (Time is directly proportional to the square root of l) then, the longer the pendulum, the greater is the period. Therefore longer pendulums have longer periods than shorter pendulums.
The period of a pendulum is not affected by the mass of the pendulum bob. The period depends only on the length of the pendulum and the acceleration due to gravity.
A longer pendulum has a longer period.
Height does not affect the period of a pendulum.
Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.
The length of the pendulum has the greatest effect on its period. A longer pendulum will have a longer period, while a shorter pendulum will have a shorter period. The mass of the pendulum bob and the angle of release also affect the period, but to a lesser extent.