As the force of gravity increases the period would decrease. So shortest period on the sun (if you can keep it intact), then sea level, then mountain top and then moon.
The period is not likely to be charged. However, it would change due to the weaker gravitational force on the moon. Since the surface gravity of the moon is 0.165 that of the earth, the period would increase by a multiple of 1/sqrt(0.165) = 2.462 approx.
... dependent on the length of the pendulum. ... longer than the period of the same pendulum on Earth. Both of these are correct ways of finishing that sentence.
Yes. The period of the pendulum (the time it takes it swing back and forth once) depends on the length of the pendulum, and also on how strong gravity is. The moon is much smaller and less massive than the earth, and as a result, gravity is considerably weaker. This would make the period of a pendulum longer on the moon than the period of the same pendulum would be on earth.
The period of a simple pendulum swinging at a small angle is approximately 2*pi*Sqrt(L/g), where L is the length of the pendulum, and g is acceleration due to gravity. Since gravity on the moon is approximately 1/6 of Earth's gravity, the period of a pendulum on the moon with the same length will be approximately 2.45 times of the same pendulum on the Earth (that's square root of 6).
As the force of gravity increases the period would decrease. So shortest period on the sun (if you can keep it intact), then sea level, then mountain top and then moon.
The time period of a pendulum would increases it the pendulum were on the moon instead of the earth. The period of a simple pendulum is equal to 2*pi*√(L/g), where g is acceleration due to gravity. As gravity decreases, g decreases. Since the value of g would be smaller on the moon, the period of the pendulum would increase. The value of g on Earth is 9.8 m/s2, whereas the value of g on the moon is 1.624 m/s2. This makes the period of a pendulum on the moon about 2.47 times longer than the period would be on Earth.
This pendulum, which is 2.24m in length, would have a period of 7.36 seconds on the moon.
The period is not likely to be charged. However, it would change due to the weaker gravitational force on the moon. Since the surface gravity of the moon is 0.165 that of the earth, the period would increase by a multiple of 1/sqrt(0.165) = 2.462 approx.
The period of a simple pendulum would be longer on the moon compared to the Earth. This is because the acceleration due to gravity is weaker on the moon, resulting in slower oscillations of the pendulum.
... dependent on the length of the pendulum. ... longer than the period of the same pendulum on Earth. Both of these are correct ways of finishing that sentence.
Yes. The period of the pendulum (the time it takes it swing back and forth once) depends on the length of the pendulum, and also on how strong gravity is. The moon is much smaller and less massive than the earth, and as a result, gravity is considerably weaker. This would make the period of a pendulum longer on the moon than the period of the same pendulum would be on earth.
The period of a simple pendulum swinging at a small angle is approximately 2*pi*Sqrt(L/g), where L is the length of the pendulum, and g is acceleration due to gravity. Since gravity on the moon is approximately 1/6 of Earth's gravity, the period of a pendulum on the moon with the same length will be approximately 2.45 times of the same pendulum on the Earth (that's square root of 6).
Nice problem! I get 32.1 centimeters.
The period of a pendulum is given by T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity. Since the pendulum's length and mass do not change, its period on the moon would be T = 2π√(L/1.62), assuming the pendulum is the same length. Solving for T gives 2.56 seconds.
About 40.7% of that on Earth or about 2.46 times slower.
Increases.