120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
6
There are 720 combinations if you use each of the digits only once per combination.
To calculate the number of 3-digit combinations that can be made from the numbers 1-9, we can use the formula for permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the total number of options (10 in this case) and r is the number of digits in each combination (3 in this case). Therefore, the total number of 3-digit combinations that can be made from the numbers 1-9 is 10^3 = 1000.
If the same 7 digits are used for all the combinations then n! = 7! = 7*6*5*4*3*2*1 = 5040 combinations There are 9,999,999-1,000,000+1=9,000,000 7-digit numbers.
45 In combinations, the order of the digits does not matter so that 12 and 21 are considered the same.
about 1,0000000000000
120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
Oh, dude, you're hitting me with some math vibes here. So, if you have 6 digits to choose from to make a 4-digit combination, you can calculate that by using the formula for permutations: 6P4, which equals 360. So, like, you can make 360 different 4-digit combinations from those 6 digits. Math is wild, man.
10C6 = 10*9*8*7/(4*3*2*1) = 210 combinations.
To calculate the number of 4-digit combinations that can be made with 4 digits, we can use the formula for permutations. Since there are 10 possible digits (0-9) for each of the 4 positions, the total number of combinations is 10^4, which equals 10,000. This is because each digit can be selected independently for each position, resulting in a total of 10 choices for each of the 4 positions.
Only one: 2468. The order of the digits in a combination does not make a difference.
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
There are 167960 9 digits combinations between numbers 1 and 20.
Each digit can appear in each of the 4 positions. There are 9 digits, therefore there are 9⁴ = 6561 such combinations.
There are infinite combinations that can make 3879
Allowing repetitions, there are 9 combinations. Without repeated digits, there is only one combination of 3 digits from 3.