I'm assuming they're three unique numbers. Thus, the first can be any of three, the second either of the remaining two, and the last is the last one left. Thus:
combinations = 3 * 2 * 1 = 6
Or, more generally, the combinations of n numbers in such a problem is n factorial, denoted as "n!", which is every number from 1 to that number multiplied together.
4 of them. In a combination the order of the numbers does not matter.
Just 4: 123, 124, 134 and 234. The order of the numbers does not matter with combinations. If it does, then they are permutations, not combinations.
To calculate the total number of possible combinations for a license plate using 3 letters and 3 numbers, we need to multiply the number of options for each character position. For letters, there are 26 options (A-Z), and for numbers, there are 10 options (0-9). Therefore, the total number of combinations can be calculated as 26 (letters) * 26 (letters) * 26 (letters) * 10 (numbers) * 10 (numbers) * 10 (numbers) = 17,576,000 possible combinations.
10 * * * * * That is just plain wrong! It depends on how many numbers in each combination but there are 1 combination of 4 numbers out of 4, 4 combinations of 3 numbers out of 4, 6 combinations of 2 numbers out of 4, 4 combinations of 1 number out of 4. A grand total of 15 (= 24-1) combinations.
There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.
If the numbers can be repeated and the numbers are 0-9 then there are 1000 different combinations.
4 of them. In a combination the order of the numbers does not matter.
Just 4: 123, 124, 134 and 234. The order of the numbers does not matter with combinations. If it does, then they are permutations, not combinations.
To calculate the total number of possible combinations for a license plate using 3 letters and 3 numbers, we need to multiply the number of options for each character position. For letters, there are 26 options (A-Z), and for numbers, there are 10 options (0-9). Therefore, the total number of combinations can be calculated as 26 (letters) * 26 (letters) * 26 (letters) * 10 (numbers) * 10 (numbers) * 10 (numbers) = 17,576,000 possible combinations.
-2
Six * * * * * No, that is the number of PERMUTATIONS (not combinations). With 3 numbers, the number of combinations, including the null combination, is 23 = 8. With the three numbers 1,2 and 3, these would be {None of them}, {1), {2), {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
There are 5245786 possible combinations and I am not stupid enough to try and list what they are!
Assuming that repeated numbers are allowed, the number of possible combinations is given by 40 * 40 * 40 = 64000.If repeated numbers are not allowed, the number of possible combinations is given by 40 * 39 * 38 = 59280.
9
You can make 5 combinations of 1 number, 10 combinations of 2 numbers, 10 combinations of 3 numbers, 5 combinations of 4 numbers, and 1 combinations of 5 number. 31 in all.
10 possible numbers on each wheel equals 10x10x10 or 1000 combinations possible.
Formula: nPr where n is the number of things to choose from and you choose r of them 17P3 = 17!/ (17-3)! = 4080