ANOVA test null hypothesis is the means among two or more data sets are equal.
ANOVA is a statistical test of whether the means of several groups are all equal. The chi-square test of association is used to test the null hypothesis that there is no association between two nominal scale variables. It does not require a distinction between independent and dependent variables.
To start with you select your hypothesis and its opposite: the null and alternative hypotheses. You select a confidence level (alpha %), which is the probability that your testing procedure rejects the null hypothesis when, if fact, it is true.Next you select a test statistic and calculate its probability distribution under the two hypotheses. You then find the possible values of the test statistic which, if the null hypothesis were true, would only occur alpha % of the times. This is called the critical region.Carry out the trial and collect data. Calculate the value of the test statistic. If it lies in the critical region then you reject the null hypothesis and go with the alternative hypothesis. If the test statistic does not lie in the critical region then you have no evidence to reject the null hypothesis.
The significance level is always small because significance levels tell you if you can reject the null-hypothesis or if you cannot reject the null-hypothesis in a hypothesis test. The thought behind this is that if your p-value, or the probability of getting a value at least as extreme as the one observed, is smaller than the significance level, then the null hypothesis can be rejected. If the significance level was larger, then statisticians would reject the accuracy of hypotheses without proper reason.
Your question is a bit difficult to understand. I will rephrase: In hypothesis testing, when the sample mean is close to the assumed mean of the population (null hypotheses), what does that tell you? Answer: For a given sample size n and an alpha value, the closer the calculated mean is to the assumed mean of the population, the higher chance that null hypothesis will not be rejected in favor of the alternative hypothesis.
The null hypothesis for a 1-way ANOVA is that the means of each subset of data are the same.
ANOVA test null hypothesis is the means among two or more data sets are equal.
Null hypothesis of a one-way ANOVA is that the means are equal. Alternate hypothesis a one-way ANOVA is that at least one of the means are different.
null hypotheses and alternative hypotheses
Scientific research does require the formulation and testing of hypotheses of various kinds.
http://wiki.answers.com/Q/Null_hypotheses_on_5_basketball_players_jump_shots"
The null and alternative hypotheses are not calculated. They should be determined before any data analyses are carried out.
When writing hypotheses the null hypothesis is generally the hypothesis stating that there will be no significant difference between the variables you are testing. An alternate hypothesis would be a hypothesis suggesting that the results will be anything other than not significant. For example if you were testing three concentrations (low, medium, and high) of a type of medication on cancer cells, then one example of an alternate hypothesis would be that the medium concentration would decrease the number of viable cancer cells.
ANOVA is a statistical test of whether the means of several groups are all equal. The chi-square test of association is used to test the null hypothesis that there is no association between two nominal scale variables. It does not require a distinction between independent and dependent variables.
thanks for your response! teacher4life
In statistics the null hypothesis is usually the one that asserts that the data come from some defined distribution. The alternative hypotheses may simply be that they do not, or it may be that they come from some other, defined distribution.
To start with you select your hypothesis and its opposite: the null and alternative hypotheses. You select a confidence level (alpha %), which is the probability that your testing procedure rejects the null hypothesis when, if fact, it is true.Next you select a test statistic and calculate its probability distribution under the two hypotheses. You then find the possible values of the test statistic which, if the null hypothesis were true, would only occur alpha % of the times. This is called the critical region.Carry out the trial and collect data. Calculate the value of the test statistic. If it lies in the critical region then you reject the null hypothesis and go with the alternative hypothesis. If the test statistic does not lie in the critical region then you have no evidence to reject the null hypothesis.