Your question is a bit difficult to understand. I will rephrase: In hypothesis testing, when the sample mean is close to the assumed mean of the population (null hypotheses), what does that tell you? Answer: For a given sample size n and an alpha value, the closer the calculated mean is to the assumed mean of the population, the higher chance that null hypothesis will not be rejected in favor of the alternative hypothesis.
The difference between the null hypothesis and the alternative hypothesis are on the sense of the tests. In statistical inference, the null hypothesis should be in a positive sense such in a sense, you are testing a hypothesis you are probably sure of. In other words, the null hypothesis must be the hypothesis you are almost sure of. Just an important note, that when you are doing a tests, you are testing if a certain event probably occurs at certain level of significance. The alternative hypothesis is the opposite one.
A hypothesis is the first step in running a statistical test (t-test, chi-square test, etc.) A NULL HYPOTHESIS is the probability that what you are testing does NOT occur. An ALTERNATIVE HYPOTHESIS is the probability that what you are testing DOES occur.
In statistics, we have to test the hypothesis i.e., null hypothesis and alternative hypothesis. In testing, most of the time we reject the null hypothesis, then using this power function result, then tell what is the probability to reject null hypothesis...
with the alternative hypothesis the reasearcher is predicting
Your question is a bit difficult to understand. I will rephrase: In hypothesis testing, when the sample mean is close to the assumed mean of the population (null hypotheses), what does that tell you? Answer: For a given sample size n and an alpha value, the closer the calculated mean is to the assumed mean of the population, the higher chance that null hypothesis will not be rejected in favor of the alternative hypothesis.
The difference between the null hypothesis and the alternative hypothesis are on the sense of the tests. In statistical inference, the null hypothesis should be in a positive sense such in a sense, you are testing a hypothesis you are probably sure of. In other words, the null hypothesis must be the hypothesis you are almost sure of. Just an important note, that when you are doing a tests, you are testing if a certain event probably occurs at certain level of significance. The alternative hypothesis is the opposite one.
A hypothesis is the first step in running a statistical test (t-test, chi-square test, etc.) A NULL HYPOTHESIS is the probability that what you are testing does NOT occur. An ALTERNATIVE HYPOTHESIS is the probability that what you are testing DOES occur.
In statistical hypothesis testing you have a null hypothesis against which you are testing an alternative. The hypothesis concerns one or more characteristics of the distribution. It is easier to illustrate the idea of directional and non-directional hypothesis. In studying the academic abilities of boys and girls the null hypothesis would be that boys and girls are equally able. One directional hypothesis would be that boys are more able. The non-directional alternative would be that there is a gender difference. You have no idea whether boys are more able or girls - only that they are not the same.
In statistics, we have to test the hypothesis i.e., null hypothesis and alternative hypothesis. In testing, most of the time we reject the null hypothesis, then using this power function result, then tell what is the probability to reject null hypothesis...
When testing a hypothesis, you expect to either reject or fail to reject the null hypothesis based on the evidence collected. If the null hypothesis is rejected, it suggests that there is enough evidence to support the alternative hypothesis. If the null hypothesis is not rejected, it implies that the data does not provide enough evidence to support the alternative hypothesis.
with the alternative hypothesis the reasearcher is predicting
A hypothesis statement consists of three parts: the null hypothesis (H0), the alternative hypothesis (Ha), and the level of significance (alpha). The null hypothesis states that there is no relationship or difference between variables, while the alternative hypothesis suggests the presence of a relationship or difference. The level of significance determines the threshold for accepting or rejecting the null hypothesis based on statistical testing.
Thinking of alternative explanation for their results
The null hypothesis is typically assumed to be true in statistical hypothesis testing. It represents the scenario where there is no significant difference or effect observed between groups or conditions being compared. Researchers seek evidence to reject the null hypothesis in favor of an alternative hypothesis that suggests a real difference or effect exists.
A hypothesis is composed of two parts: the null hypothesis, which states that there is no effect or no difference between groups, and the alternative hypothesis, which states that there is an effect or a difference. These two components together form the basis for statistical testing and inference in research.
No. The null hypothesis is not considered correct. It is an assumption, and hypothesis testing is a consistent meand of determining whether the data is sufficiently strong to say that it may be untrue. The data either supports the alternative hypothesis or it fails to reject it. See examples in links. Also note this quote from Wikipedia: "Statistical hypothesis testing is used to make a decision about whether the data contradicts the null hypothesis: this is called significance testing. A null hypothesis is never proven by such methods, as the absence of evidence against the null hypothesis does not establish it."