The probability is 50%. There are four probabilities: dominant homozygous, recessive homozygous, or heterozygous.
25% or 1 out of 4 (You can use a Punnett Square for that and/or other questions like it.)
R represents the dominant round allele, and rrepresents the recessive wrinkled allele. :D
The frequency of the homozygous dominant genotype.
This depends entirely on the genotype of the parents. The probability of getting a specific genotype is the probability of getting the correct allele from mother (1/2) multiplied by the probability of getting the correct allele from father (1/2) multiplied by the number of ways this can occur. The probability of getting a phenotype, if the phenotype is dominant, is the sum of the probability of getting two dominant alleles, and the probability of getting one dominant allele. If the phenotype is recessive, the probability is equal to the probability of getting two recessive alleles.
The probability is 50%. There are four probabilities: dominant homozygous, recessive homozygous, or heterozygous.
The probability of offspring for two heterozygous dogs (Aa x Aa) is 25% homozygous dominant (AA), 50% heterozygous (Aa), and 25% homozygous recessive (aa) based on Mendelian genetics principles.
If one parent is homozygous dominant (AA) and the other parent is homozygous recessive (aa), all offspring will inherit one dominant allele and display the dominant phenotype. Therefore, the probability of their offspring exhibiting the dominant phenotype is 100%.
There is a 50% chance of a homozygous dominant and a 50% chance of a heterozygous.
There are two forms of Homozygous inheritance: Homozygous Dominant, and Homozygous Recessive. In order for two parents that are Homozygous to produce a Heterozygous offspring, one of them MUST be Homozygous Dominant, and the other MUST be Homozygous Recessive.
The homozygous dominant individual can only pass on the dominant allele and the homozygous recessive individual can only pass on the recessive allele, therefore all offspring will be heterozygous and have the dominant phenotype.
From the cross Aa x Aa, the probability of producing a homozygous dominant offspring is 1/4 or (0.25).
The scientist should perform a test cross between the organism and a homozygous recessive organism. If all offspring show the dominant trait, the original organism is homozygous dominant. If some offspring show the recessive trait, the original organism is heterozygous.
Out of the 240 offspring, approximately 60 would be homozygous (25% of 240). This is because when two heterozygous plants are crossed (Aa x Aa), the Punnett square shows that 25% of the offspring will be homozygous dominant (AA), 50% will be heterozygous (Aa), and 25% will be homozygous recessive (aa).
To determine if a particular plant is homozygous or heterozygous, you would need to perform a test cross with a homozygous recessive individual. If the offspring display the recessive trait, the original plant would likely be heterozygous. If all offspring exhibit the dominant trait, the original plant would likely be homozygous dominant.
To determine if a plant is homozygous or heterozygous, you would need to test cross it with a homozygous recessive plant. If the offspring show the recessive trait, the original plant is heterozygous; if all offspring show the dominant trait, the original plant is homozygous.
The offspring will inherit one dominant allele from the homozygous dominant male and have a 50% chance of inheriting the dominant allele from the heterozygous female. Therefore, the ratio of offspring with the dominant allele to those without will be 1:1.