(1) That the probabilities lie between 0 and 1. (2) The sum of all probabilities of the distribution sum up to 1.
A discrete probability distribution is defined over a set value (such as a value of 1 or 2 or 3, etc). A continuous probability distribution is defined over an infinite number of points (such as all values between 1 and 3, inclusive).
Your question is not clear, but I will attempt to interpret it as best I can. When you first learn about probability, you are taught to list out the possible outcomes. If all outcomes are equally probable, then the probability is easy to calculate. Probability distributions are functions which provide probabilities of events or outcomes. A probability distribution may be discrete or continuous. The range of both must cover all possible outcomes. In the discrete distribution, the sum of probabilities must add to 1 and in the continuous distribtion, the area under the curve must sum to 1. In both the discrete and continuous distributions, a range (or domain) can be described without a listing of all possible outcomes. For example, the domain of the normal distribution (a continuous distribution is minus infinity to positive infinity. The domain for the Poisson distribution (a discrete distribution) is 0 to infinity. You will learn in math that certain series can have infinite number of terms, yet have finite results. Thus, a probability distribution can have an infinite number of events and sum to 1. For a continuous distribution, the probability of an event are stated as a range, for example, the probability of a phone call is between 4 to 10 minutes is 10% or probability of a phone call greater than 10 minutes is 60%, rather than as a single event.
For a discrete variable, you add together the probabilities of all values of the random variable less than or equal to the specified number. For a continuous variable it the integral of the probability distribution function up to the specified value. Often these values may be calculated or tabulated as cumulative probability distributions.
Not sure about only two requirements. I would say all of the following:there is a finite (or countably infinite) number of mutually exclusive outcomes possible,the probability of each outcome is a number between 0 and 1,the sum of the probabilities over all possible outcomes is 1.The Poisson distribution, for example, is countably infinite.
First decide whether the event space is discrete or continuous.For a discrete event space, for each outcome in the space assign a probability: a number in the interval [0, 1] such that the sum of probabilities for all outcomes is 1. The mapping from the event space to the probabilities is the probability distribution function.The procedure for a continuous event space is analogous: the sum is replaced by the integral.
Find all the possible outcomes and the probabilities associated with each. That information comprises the probability distribution.Find all the possible outcomes and the probabilities associated with each. That information comprises the probability distribution.Find all the possible outcomes and the probabilities associated with each. That information comprises the probability distribution.Find all the possible outcomes and the probabilities associated with each. That information comprises the probability distribution.
(1) That the probabilities lie between 0 and 1. (2) The sum of all probabilities of the distribution sum up to 1.
A discrete probability distribution is defined over a set value (such as a value of 1 or 2 or 3, etc). A continuous probability distribution is defined over an infinite number of points (such as all values between 1 and 3, inclusive).
Your question is not clear, but I will attempt to interpret it as best I can. When you first learn about probability, you are taught to list out the possible outcomes. If all outcomes are equally probable, then the probability is easy to calculate. Probability distributions are functions which provide probabilities of events or outcomes. A probability distribution may be discrete or continuous. The range of both must cover all possible outcomes. In the discrete distribution, the sum of probabilities must add to 1 and in the continuous distribtion, the area under the curve must sum to 1. In both the discrete and continuous distributions, a range (or domain) can be described without a listing of all possible outcomes. For example, the domain of the normal distribution (a continuous distribution is minus infinity to positive infinity. The domain for the Poisson distribution (a discrete distribution) is 0 to infinity. You will learn in math that certain series can have infinite number of terms, yet have finite results. Thus, a probability distribution can have an infinite number of events and sum to 1. For a continuous distribution, the probability of an event are stated as a range, for example, the probability of a phone call is between 4 to 10 minutes is 10% or probability of a phone call greater than 10 minutes is 60%, rather than as a single event.
For a discrete variable, you add together the probabilities of all values of the random variable less than or equal to the specified number. For a continuous variable it the integral of the probability distribution function up to the specified value. Often these values may be calculated or tabulated as cumulative probability distributions.
Not sure about only two requirements. I would say all of the following:there is a finite (or countably infinite) number of mutually exclusive outcomes possible,the probability of each outcome is a number between 0 and 1,the sum of the probabilities over all possible outcomes is 1.The Poisson distribution, for example, is countably infinite.
A discrete distribution is one in which the random variable can take only a limited number of values. A cumulative distribution, which can be discrete of continuous, is the sum (if discrete) or integral (if continuous) of the probabilities of all events for which the random variable is less than or equal to the given value.
all probabilities smaller than the given probability ("at most") all probabilities larger than the given probability ("at least")
Not quite. The listing must also be exhaustive: it must contain all possible outcomes.For the roll of a fair cubic die, consider the following:Prob(1) = 1/6Prob(2) = 1/6This is a mutually exclusive listing of the outcomes of the experiment and the corresponding probabilities of occurrence but it is not a probability distribution because it does not include all possible outcomes. As a result, the total of the listed probabilities is less than 1.
It is a real number. It cannot be negative. The sum of the probabilities of all possible outcomes of a discrete variable is 1. Similarly, the integral of the probabilities over the whole range of possible outcomes of a continuous variable is 1.
If the distribution is discrete you need to add together the probabilities of all the values between the two given ones, whereas if the distribution is continuous you will need to integrate the probability distribution function (pdf) between those limits. The above process may require you to use numerical methods if the distribution is not readily integrable. For example, the Gaussian (Normal) distribution is one of the most common continuous pdfs, but it is not analytically integrable. You will need to work with tables that have been computed using numerical methods.