It can be.
Chat with our AI personalities
The mean of a binomial probability distribution can be determined by multiplying the sample size times the probability of success.
In a probability sample, each unit has the same probability of being included in the sample. Equivalently, given a sample size, each sample of that size from the population has the same probability of being selected. This is not true for non-probability sampling.
The probability is determined by the binomial distribution. We consider p = probability of defect, q = probability of not defect, n = sample size, and x= number of defects in sample, in this case x=2. We calculate the probability as P(X = x) = n!/[(n-x)! x!] pxqn-x If sample size = 10 and p = 0.1 then: P(x= 2) = 10!/(8!x2!)(0.1)2(0.9)8 = 0.1937 You can find more about the binomial distribution under Wikipedia. It is important also to note the assumptions when using this distribution. It must be a random sample and the probability of defects is known.
In the context of a sample of size n out of a population of N, any sample of size n has the same probability of being selected. This is equivalent to the statement that any member of the population has the same probability of being included in the sample.
Given any sample size there are many samples of that size that can be drawn from the population. In the population is N and the sample size in n, then there are NCn, but remember that the population can be infinite. A test statistic is a value that is calculated from only the observations in a sample (no unknown parameters are estimated). The value of the test statistic will change from sample to sample. The sampling distribution of a test statistic is the probability distribution function for all the values that the test statistic can take across all possible samples.