Yes, the uniform probability distribution is symmetric about the mode. Draw the sketch of the uniform probability distribution. If we say that the distribution is uniform, then we obtain the same constant for the continuous variable.
* * * * *
The uniform probability distribution is one in which the probability is the same throughout its domain, as stated above. By definition, then, there can be no value (or sub-domain) for which the probability is greater than elsewhere. In other words, a uniform probability distribution has no mode. The mode does not exist.
The distribution cannot, therefore, be symmetric about something that does not exist.
Chat with our AI personalities
No, it is in general not true - for example for uniform distribution on [0,1] every number in the interval is a mode, but the mean is 1/2. The correct answer would be that a symmetric unimodal distribution has one mode equal to the mean (but may have modes elsewhere).
Mean
They are all the same.
Not necessarily.
Yes, they are. A uniform distribution is one in which the probability of each outcome is the same and, as a result, the mean and median are the same. A uniform distribution should not be confused with a set of random variables, all with the same distributions - much less the same values!For example, the median of a Poisson distribution is not the same as its mean. So if you have a number of random variables (RVs), each with the same Poisson distribution, their mean and median will be different. This is true of any set of RVs whose distributions are asymmetric.And it is very easy to see that the mode need not be the same. The outcome of a single roll of a regular die is the uniform distribution over the numbers {1, 2, 3, 4, 5, 6}. The mean and median are 3.5 but the mode cannot be 3.5 since that is not a value that can ever be observed.