A 3-wheel lock with each wheel having digits from 0 to 9 means each wheel can have 10 possible values (0 through 9). To find the total number of combinations, you calculate:
10 x 10 x 10 = 1000
So, there are 1000 possible combinations. Here's a list of all combinations from 000 to 999:
000, 001, 002, 003, 004, 005, 006, 007, 008, 009,
010, 011, 012, 013, 014, 015, 016, 017, 018, 019,
020, 021, 022, 023, 024, 025, 026, 027, 028, 029,
030, 031, 032, 033, 034, 035, 036, 037, 038, 039,
040, 041, 042, 043, 044, 045, 046, 047, 048, 049,
050, 051, 052, 053, 054, 055, 056, 057, 058, 059,
060, 061, 062, 063, 064, 065, 066, 067, 068, 069,
070, 071, 072, 073, 074, 075, 076, 077, 078, 079,
080, 081, 082, 083, 084, 085, 086, 087, 088, 089,
090, 091, 092, 093, 094, 095, 096, 097, 098, 099,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249,
250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269,
270, 271, 272, 273, 274, 275, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287, 288, 289,
290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
300, 301, 302, 303, 304, 305, 306, 307, 308, 309,
310, 311, 312, 313, 314, 315, 316, 317, 318, 319,
320, 321, 322, 323, 324, 325, 326, 327, 328, 329,
330, 331, 332, 333, 334, 335, 336, 337, 338, 339,
340, 341, 342, 343, 344, 345, 346, 347, 348, 349,
350, 351, 352, 353, 354, 355, 356, 357, 358, 359,
360, 361, 362, 363, 364, 365, 366, 367, 368, 369,
370, 371, 372, 373, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384, 385, 386, 387, 388, 389,
390, 391, 392, 393, 394, 395, 396, 397, 398, 399,
400, 401, 402, 403, 404, 405, 406, 407, 408, 409,
410, 411, 412, 413, 414, 415, 416, 417, 418, 419,
420, 421, 422, 423, 424, 425, 426, 427, 428, 429,
430, 431, 432, 433, 434, 435, 436, 437, 438, 439,
440, 441, 442, 443, 444, 445, 446, 447, 448, 449,
450, 451, 452, 453, 454, 455, 456, 457, 458, 459,
460, 461, 462, 463, 464, 465, 466, 467, 468, 469,
470, 471, 472, 473, 474, 475, 476, 477, 478, 479,
480, 481, 482, 483, 484, 485, 486, 487, 488, 489,
490, 491, 492, 493, 494, 495, 496, 497, 498, 499,
500, 501, 502, 503, 504, 505, 506, 507, 508, 509,
510, 511, 512, 513, 514, 515, 516, 517, 518, 519,
520, 521, 522, 523, 524, 525, 526, 527, 528, 529,
530, 531, 532, 533, 534, 535, 536, 537, 538, 539,
540, 541, 542, 543, 544, 545, 546, 547, 548, 549,
550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568, 569,
570, 571, 572, 573, 574, 575, 576, 577, 578, 579,
580, 581, 582, 583, 584, 585, 586, 587, 588, 589,
590, 591, 592, 593, 594, 595, 596, 597, 598, 599,
600, 601, 602, 603, 604, 605, 606, 607, 608, 609,
610, 611, 612, 613, 614, 615, 616, 617, 618, 619,
620, 621, 622, 623, 624, 625, 626, 627, 628, 629,
630, 631, 632, 633, 634, 635, 636, 637, 638, 639,
640, 641, 642, 643, 644, 645, 646, 647, 648, 649,
650, 651, 652, 653, 654, 655, 656, 657, 658, 659,
660, 661, 662, 663, 664, 665, 666, 667, 668, 669,
670, 671, 672, 673, 674, 675, 676, 677, 678, 679,
680, 681, 682, 683, 684, 685, 686, 687, 688, 689,
690, 691, 692, 693, 694, 695, 696, 697, 698, 699,
700, 701, 702, 703, 704, 705, 706, 707, 708, 709,
710, 711, 712, 713, 714, 715, 716, 717, 718, 719,
720, 721, 722, 723, 724, 725, 726, 727, 728, 729,
730, 731, 732, 733, 734, 735, 736, 737, 738, 739,
740, 741, 742, 743, 744, 745, 746, 747, 748, 749,
750, 751, 752, 753, 754, 755, 756, 757, 758, 759,
760, 761, 762, 763, 764, 765, 766, 767, 768, 769,
770, 771, 772, 773, 774, 775, 776, 777, 778, 779,
780, 781, 782, 783, 784, 785, 786, 787, 788, 789,
790, 791, 792, 793, 794, 795, 796, 797, 798, 799,
800, 801, 802, 803, 804, 805, 806, 807, 808, 809,
810, 811, 812, 813, 814, 815, 816, 817, 818, 819,
820, 821, 822, 823, 824, 825, 826, 827, 828, 829,
830, 831, 832, 833, 834, 835, 836, 837, 838, 839,
840, 841, 842, 843, 844, 845, 846, 847, 848, 849,
850, 851, 852, 853, 854, 855, 856, 857, 858, 859,
860, 861, 862, 863, 864, 865, 866, 867, 868, 869,
870, 871, 872, 873, 874, 875, 876, 877, 878, 879,
880, 881, 882, 883, 884, 885, 886, 887, 888, 889,
890, 891, 892, 893, 894, 895, 896, 897, 898, 899,
900, 901, 902, 903, 904, 905, 906, 907, 908, 909,
910, 911, 912, 913, 914, 915, 916, 917, 918, 919,
920, 921, 922, 923, 924, 925, 926, 927, 928, 929,
930, 931, 932, 933, 934, 935, 936, 937, 938, 939,
940, 941, 942, 943, 944, 945, 946, 947, 948, 949,
950, 951, 952, 953, 954, 955, 956, 957, 958, 959,
960, 961, 962, 963, 964, 965, 966, 967, 968, 969,
970, 971, 972, 973, 974, 975, 976, 977, 978, 979,
980, 981, 982, 983, 984, 985, 986, 987, 988, 989,
990, 991, 992, 993, 994, 995, 996, 997, 998, 999
the first wheel has 8 possibilities. the second wheel has only 7 possibilities as it cannot be the same as the first. the third wheel has 6 possibilities and the last has only 5 possibilities. 8*7*6*5=1680
104 or 10000
9 times 9 times 9 times 9 times 9 times 9 times 9 times 9 times 9 = Imagine it's a combination lock with 9 tumblers. Each tumbler has 9 "positions" - the digits from 1 to 9. So you multiply the number of digits [9] against itself [9] for as many tumblers are in the combination (9). Tumbler # 1 2 3 4 5 6 7 8 9 Number of possible digits 9 9 9 9 9 9 9 9 9
10,000,000,000,000 This would be the number of permutations on a 13-position combination lock, for example. In the first position there would be one number out of ten possibilities (0-9). Next to any one number there would be any one of ten again. So in the first two positions there are 10 x 10 possible combinations i.e. 10^2 (= 100). In the third position there would be 10 more possibilities against the previous 100 possibilities, i.e. 100 x 10, that is: 10^3 (= 1000). So, for a thirteen digit lock, there would be 10^13 possibilities, which is 1 followed by thirteen zeros, as shown above. Of course, if 'numbers' with leading digits e.g. 0 000 087 654 321, and all zeros, are not counted as valid 'numbers' then there are 13 less possibilities. i.e. There are only 9,999,999,999,987 possible ' numbers'.
put the number code to 000 then press the button to the left and stick a key on the bottom of the lock and push it up and it will release the hook holding the grip.
10000
10 possible numbers on each wheel equals 10x10x10 or 1000 combinations possible.
If the digits can repeat, then there are 256 possible combinations. If they can't repeat, then there are 24 possibilities.
All the possible digits (10 of them; 0-9) are multiplied by themselves by the number of digits that can be shown in the lock. (3) This is 103, or 1,000. This certainly shows why guessing is not a good way to break into a numerical lock, especially since three is a rather low number of digits for one!
6,720 combinations.
10x9x9x9
10000
Oh, what a happy little question! On a 3-number lock, there are 1,000 possible combinations. Isn't that just wonderful to think about? Just remember to take your time and enjoy the process of finding the right combination, like painting a beautiful landscape!
I would have to say 10,000 possible combinations. (0000, 0001, 0002 through 9998, 9999)
If you don't know the code to the combination lock then your stuffed. Just go through all the possible combinations and unlock it (only if its a 3/4 digit) On the other hand if you do know the code and want to change the lock, hold down the unlock button/lever and change the digits and that should change the code.
There is no option for four wheel lock on a Journey.
2001 kia sportage will not lock into four wheel say it in four wheel drive but front wheels dont pull or lock in