Using the Taylor series expansion of the exponential function. See related links
Lamdba (like most Greek letters in statistics) usually denotes a parameter of a distribution (usually of Poisson, gamma or exponential distributions). This will specify the entire distribution and allow for numerical analysis of the probability generating, moment generating, probability density/mass, distribution and/or cumulant functions (along with all moments), as and where these are defined.
No, a distribution can have infinitely many moments: the first is the mean, the second variance. Then there are skewness (3), kurtosis (4), hyperskewness (5), hyperflatness (6) and so on.If mk represents the kth moment, thenmk = E[(X - m1)k] where E is the expected value.It is, therefore, perfectly possible for m1 and m2 to be the same but for the distribution to differ at the higher moments.
You mean instantaneous - means happening or completed in a moment, with no delay, immediate
Either an Interval or an Ordinal Scale
To derive the moment generating function of an exponential distribution, you can use the definition of the moment generating function E(e^(tX)) where X is an exponential random variable with parameter λ. Substitute the probability density function of the exponential distribution into the moment generating function formula and simplify the expression to obtain the final moment generating function for the exponential distribution, which is M(t) = λ / (λ - t) for t < λ.
A moment generating function does exist for the hypergeometric distribution.
See: http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
The MGF is exp[lambda*(e^t - 1)].
Using the Taylor series expansion of the exponential function. See related links
It is exp(20t + 25/2*t^2).
I've included two links. The MLE of parameters of NIG distribution is the subject of current research as attached. The moment generating function is provided in the first link.
The moment generating function for any real valued probability distribution is the expected value of e^tX provided that the expectation exists.For the Type I Pareto distribution with tail index a, this isa*[-x(m)t)^a*Gamma[-a, -x(m)t)] for t < 0, where x(m) is the scale parameter and represents the least possible positive value of X.
The moment generating function is M(t) = Expected value of e^(xt) = SUM[e^(xt)f(x)] and for the Poisson distribution with mean a inf = SUM[e^(xt).a^x.e^(-a)/x!] x=0 inf = e^(-a).SUM[(ae^t)^x/x!] x=0 = e^(-a).e^(ae^t) = e^[a(e^t -1)]
Your question did not identify one distribution in particular. I have provide in the related link the moment generating functions of various probability distributions.
There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.
You cannot because it does not exist.Although all the moments of the lognormal distribution do exist, the distribution is not uniquely determined by its moments. One of the consequences of this is that the expected values E[e^tX] does not converge for any positive t.