answersLogoWhite

0

What else can I help you with?

Continue Learning about Statistics

When the population standard deviation is not known the sampling distribution is a?

If the samples are drawn frm a normal population, when the population standard deviation is unknown and estimated by the sample standard deviation, the sampling distribution of the sample means follow a t-distribution.


When to use z or t-distribution?

If the sample size is large (>30) or the population standard deviation is known, we use the z-distribution.If the sample sie is small and the population standard deviation is unknown, we use the t-distribution


Is it possible that in standard normal distribution standard deviation known and mean unknown?

it is possible to distribute standard deviation and mean but you dont have to understand how the mouse runs up the clock hicorky dickory dock.


What are importance of mean and standard deviation in the use of normal distribution?

For data sets having a normal distribution, the following properties depend on the mean and the standard deviation. This is known as the Empirical rule. About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviation of the mean About 99.7% of all values fall within 3 standard deviation of the mean. So given any value and given the mean and standard deviation, one can say right away where that value is compared to 60, 95 and 99 percent of the other values. The mean of the any distribution is a measure of centrality, but in case of the normal distribution, it is equal to the mode and median of the distribtion. The standard deviation is a measure of data dispersion or variability. In the case of the normal distribution, the mean and the standard deviation are the two parameters of the distribution, therefore they completely define the distribution. See: http://en.wikipedia.org/wiki/Normal_distribution


How do you calculate mean median and standard deviation?

The mean is the sum of each sample divided by the number of samples.The median is the middle sample in a ranked list of samples, or the mean of the middle two samples if the number of samples is even.The standard deviation is the square root of the sum of the squares of the difference between the mean and each of the samples, such sum then divided by either N or by N-1, before the square root is taken. N is used for population standard deviation, where the mean is known independently of the calculation of the standard deviation. N-1 is used for sample standard deviation, where the mean is calculated along with the standard deviation, and the "-1" compensates for the loss of a "degree of freedom" that such a procedure entails.Not asked, but answered for completeness sake, the mode is the most probable value, and does not necessarily represent the mean such as in an asymmetrically skewed distribution, such as a Poisson distribution.

Related Questions

When the population standard deviation is known the sampling distribution is known as what?

normal distribution


When the population standard deviation is known the sampling distribution is a?

normal distribution


When the population standard deviation is not known the sampling distribution is a?

If the samples are drawn frm a normal population, when the population standard deviation is unknown and estimated by the sample standard deviation, the sampling distribution of the sample means follow a t-distribution.


What is the sampling distribution when the standard deviation is known?

When the standard deviation of a population is known, the sampling distribution of the sample mean will be normally distributed, regardless of the shape of the population distribution, due to the Central Limit Theorem. The mean of this sampling distribution will be equal to the population mean, while the standard deviation (known as the standard error) will be the population standard deviation divided by the square root of the sample size. This allows for the construction of confidence intervals and hypothesis testing using z-scores.


When to use z or t-distribution?

If the sample size is large (>30) or the population standard deviation is known, we use the z-distribution.If the sample sie is small and the population standard deviation is unknown, we use the t-distribution


When the population standard deviation is known the sample distribution is a?

When the population standard deviation is known, the sample distribution is a normal distribution if the sample size is sufficiently large, typically due to the Central Limit Theorem. If the sample size is small and the population from which the sample is drawn is normally distributed, the sample distribution will also be normal. In such cases, statistical inference can be performed using z-scores.


When do you know when to use t-distribution opposed to the z-distribution?

z- statistics is applied under two conditions: 1. when the population standard deviation is known. 2. when the sample size is large. In the absence of the parameter sigma when we use its estimate s, the distribution of z remains no longer normal but changes to t distribution. this modification depends on the degrees of freedom available for the estimation of sigma or standard deviation. hope this will help u.... mona upreti.. :)


Is it possible that in standard normal distribution standard deviation known and mean unknown?

it is possible to distribute standard deviation and mean but you dont have to understand how the mouse runs up the clock hicorky dickory dock.


What is the difference between a z score and t score?

A z-score measures how many standard deviations an individual data point is from the mean of a population, assuming the population standard deviation is known and the sample size is large (typically n > 30). In contrast, a t-score is used when the sample size is small (n ≤ 30) or when the population standard deviation is unknown, relying on the sample's standard deviation instead. The t-distribution, which the t-score utilizes, is wider and has heavier tails than the normal distribution, reflecting more uncertainty in smaller samples. As sample sizes increase, the t-distribution approaches the normal distribution, making z-scores more applicable.


How do you solve if a population has a mean of μ80 and a standard deviation of σ20?

The question gives summary statistics for a population. If the underlying distribution is Gaussian, or some other known distribution, then the probability density function can be calculated. Even so, there is no question and so nothing to "solve".


What are importance of mean and standard deviation in the use of normal distribution?

For data sets having a normal distribution, the following properties depend on the mean and the standard deviation. This is known as the Empirical rule. About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviation of the mean About 99.7% of all values fall within 3 standard deviation of the mean. So given any value and given the mean and standard deviation, one can say right away where that value is compared to 60, 95 and 99 percent of the other values. The mean of the any distribution is a measure of centrality, but in case of the normal distribution, it is equal to the mode and median of the distribtion. The standard deviation is a measure of data dispersion or variability. In the case of the normal distribution, the mean and the standard deviation are the two parameters of the distribution, therefore they completely define the distribution. See: http://en.wikipedia.org/wiki/Normal_distribution


What percent of a normal population is within 2 standard deviations of the mean?

In a normal distribution, approximately 95% of the population falls within 2 standard deviations of the mean. This is known as the 95% rule or the empirical rule. The empirical rule states that within one standard deviation of the mean, about 68% of the population falls, and within two standard deviations, about 95% of the population falls.