If an event has a probability of 1, it will happen no matter what.
The probability of rolling a number x, such that 1 ≤ x ≤ 6, on a standard 6 sided die, is 1.
The probability of the temperature being > absolute 0, is 1.
With a standard 52 card deck of card, P(drawing a spade or drawing a club or drawing a heard or drawing a diamond) is 1.
In these situations, there is no variable that can affect the event. It will happen no matter what.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, given that the probability of a girl is approx 0.48, the probability of three out of three being girls is 0.1127.
No. There are 24 hours in a day, not 12!
Not necessarily. The probability of a complementary event with probability p is 1-p. Two mutually exclusive events, however, don't necessarily add up to a probability of 1. For example, the probability of drawing a King from a standard deck of cards is 1 in 13, which the complementary probability of not drawing a King is 12 in 13. The probability, however, of drawing a Heart is 1 in 4, while the probability of drawing a Club is also 1 in 4. That leaves Diamonds and Spades, which account for the remaining probability of 2 in 4.
These events are complementary. Let P(A) = probability event will occur. Then the probability it will not occur is: 1 - P(A).
2/6 or 1/3 or 0.3333.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, given that the probability of a girl is approx 0.48, the probability of three out of three being girls is 0.1127.
Assume the given event depicts flipping a fair coin and rolling a fair die. The probability of obtaining a tail is ½, and the probability of obtaining a 3 in a die is 1/6. Then, the probability of encountering these events is (½)(1/6) = 1/12.
No. There are 24 hours in a day, not 12!
The probability of flipping one coin and getting tails is 1/2. In order to find the probability of multiple events occurring, you find the product of all the events. For 3 coins the probability of getting tails 3 times is 1/8 because .5 x .5 x .5 = .125 or 1/8.
If an event is absolutely certain to happen is then we say the probability of it happening is 1.Complementary events are such that one of the events musthappen. Therefore the probability of one of a set of complementary events occurring is 1.For instance : The probability that a fair coin when tossed will come down showing heads is 1/2, and that it will show tails is also 1/2.The two events are complementary so the probability that the coin toss will result in either a heads or a tails is 1.Similarly, the probability that a die when rolled will show a number 1, 2, 3, 4, 5 or 6 is 1 as all six events are complementary.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of three boys and a girl is 0.2669.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability that all three children are boys is approx 0.1381
Not necessarily. The probability of a complementary event with probability p is 1-p. Two mutually exclusive events, however, don't necessarily add up to a probability of 1. For example, the probability of drawing a King from a standard deck of cards is 1 in 13, which the complementary probability of not drawing a King is 12 in 13. The probability, however, of drawing a Heart is 1 in 4, while the probability of drawing a Club is also 1 in 4. That leaves Diamonds and Spades, which account for the remaining probability of 2 in 4.
If a fair die is thrown often enough, the probability is 1.For the first three throws of a fair die, the probability is 1/216.If a fair die is thrown often enough, the probability is 1.For the first three throws of a fair die, the probability is 1/216.If a fair die is thrown often enough, the probability is 1.For the first three throws of a fair die, the probability is 1/216.If a fair die is thrown often enough, the probability is 1.For the first three throws of a fair die, the probability is 1/216.
These events are complementary. Let P(A) = probability event will occur. Then the probability it will not occur is: 1 - P(A).
2/6 or 1/3 or 0.3333.
You might be referring to mathematical measure theory. Probability is a measure. So if I said that the probability of getting 1, 3 or 5 rolling a single die is 1/2 then that probability would be the measure of the composite event consisting of the three possible outcomes 1, 3 and 5.