answersLogoWhite

0

Strength and direction of linear relation. Closer to 1 is positive linear association, closer to -1 is positive negative association and closer to 0 means no linear relation. Remember that 0 does not mean that there is no relation - just no linear relation.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Statistics

What is correlation coefficient?

'Correlation coefficient' means a statistic representing how closely two variables co-vary; it can vary from -1 (perfect negative correlation) through 0 (no correlation) to +1 (perfect positive correlation)* * * * *A key piece of information that is left out of the answer by True Knowledge (which casts very serious doubts about its name!) is that the statistic only is a measure of linearrelationship. A symmetric non-linear relationship (a parabola, for example) will show zero correlation but show anyone a graph of a parabola and then try convincing them that there is no relationship between the two variables!A correlation for two variables is a measure of the strength of a linear relationship between them. It is a measure that ranges from -1 (the variables move perfectly together but in opposite directions) to 1 (the variables move perfectly together and in the same direction). A correlation coefficient of 0 indicates no linear relationship between the variables.Two important points to note:Correlation measures linear relationship: not any other relationships. Thus a perfect relationship that is symmetric (y = x^2, for example) will have a correlation coefficient of 0.Correlation coefficient is a measure of association, not of causality. In the UK, ice cream sales and swimming accidents are correlated. This is not because eating ice cream causes swimming accidents not because people recover from swimming accidents by eating ice cream. In reality, both events are more likely on warm days - such as they are!


Correlation coefficients represents the WEAKEST relationship?

A correlation coefficient represents the strength and direction of a linear relationship between two variables. A correlation coefficient close to zero indicates a weak relationship between the variables, where changes in one variable do not consistently predict changes in the other. However, it is important to note that a correlation coefficient of zero does not necessarily mean there is no relationship between the variables, as non-linear relationships may exist.


When is the correlation coefficient closest to 1?

When x and y values of points agree in a linear relationship


What measures the strength of the linear relationship between two quantitative variables?

The strength of the linear relationship between two quantitative variables is measured by the correlation coefficient. The correlation coefficient, denoted by "r," ranges from -1 to 1. A value of 1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship. The closer the absolute value of the correlation coefficient is to 1, the stronger the linear relationship between the variables.


What is a negative correlation?

A negative correlation is a measure of the linear component of a relationship where one variable increase as the other decrease.

Related Questions

Correlation coefficient value mean?

The correlation coefficient is a measure of linear association between two (or more) variables. It does not measure non-linear relationships nor does it say anything about causality.


When there is no linear correlation the correlation coefficient equals?

0


What do you know about a linear model from the correlation coefficient?

It's a measure of how well a simple linear model accounts for observed variation.


Can the correlation coefficient be represented as a percentage?

No, the correlation coefficient is a measure of the strength and direction of the linear relationship between two variables, and it ranges from -1 to 1. It cannot be represented as a percentage.


Is the coefficient of correlation a useful measure of the linear relationship between two variables true or false?

True


What is the range of correlation coefficient and what does its value tell?

The product-moment correlation coefficient or PMCC should have a value between -1 and 1. A positive value shows a positive linear correlation, and a negative value shows a negative linear correlation. At zero, there is no linear correlation, and the correlation becomes stronger as the value moves further from 0.


What is Karl pearsons correlation co-efficient?

Pearson's correlation coefficient, also known as the product moment correlation coefficient (PMCC), and denoted by r, is a measure of linear agreement between two random variable. It can take any value from -1 to +1. +1 indicates a perfect positive linear relationship between the two variables, a value of 0 implies no linear relationship whereas a value of -1 shows a perfect negative linear relationship. A low (or 0) correlation does not imply that the variables are unrelated: it simply means a there is no linear relationship: a symmetric relationship will give a very low or zero value for r.The browser which we are compelled to use is not suited for any serious mathematical answer and I suggest that you look up Wikipedia for the formula to calculate r.


What serves as standard of comparison to evaluate effect of the independent variable on dependent variable?

The correlation coefficient, plus graphical methods to verify the validity of a linear relationship (which is what the correlation coefficient measures), and the appropriate tests of the statisitical significance of the correlation coefficient.


What is the meaning of correlation coefficient?

The correlation coefficient takes on values ranging between +1 and -1. The following points are the accepted guidelines for interpreting the correlation coefficient:0 indicates no linear relationship.+1 indicates a perfect positive linear relationship: as one variable increases in its values, the other variable also increases in its values via an exact linear rule.-1 indicates a perfect negative linear relationship: as one variable increases in its values, the other variable decreases in its values via an exact linear rule.Values between 0 and 0.3 (0 and -0.3) indicate a weak positive (negative) linear relationship via a shaky linear rule.Values between 0.3 and 0.7 (0.3 and -0.7) indicate a moderate positive (negative) linear relationship via a fuzzy-firm linear rule.Values between 0.7 and 1.0 (-0.7 and -1.0) indicate a strong positive (negative) linear relationship via a firm linear rule.The value of r squared is typically taken as "the percent of variation in one variable explained by the other variable," or "the percent of variation shared between the two variables."Linearity Assumption. The correlation coefficient requires that the underlying relationship between the two variables under consideration is linear. If the relationship is known to be linear, or the observed pattern between the two variables appears to be linear, then the correlation coefficient provides a reliable measure of the strength of the linear relationship. If the relationship is known to be nonlinear, or the observed pattern appears to be nonlinear, then the correlation coefficient is not useful, or at least questionable.


When doing linear regression if the correlation coefficient is positive the slope of the line is negative?

False.


What is regression coefficient and correlation coefficient?

The strength of the linear relationship between the two variables in the regression equation is the correlation coefficient, r, and is always a value between -1 and 1, inclusive. The regression coefficient is the slope of the line of the regression equation.


How is a linear relationship between two variables measured in statistics?

The Correlation Coefficient computed from the sample data measures the strength and direction of a linear relationship between two variables. The symbol for the sample correlation coefficient is r. The symbol for the population correlation is p (Greek letter rho).