The strength of the linear relationship between two quantitative variables is measured by the correlation coefficient. The correlation coefficient, denoted by "r," ranges from -1 to 1. A value of 1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship. The closer the absolute value of the correlation coefficient is to 1, the stronger the linear relationship between the variables.
Chat with our AI personalities
The coefficient of determination, otherwise known as the r^2 value, measures the strength of the linear relationship between two quantitative variables. An r^2 value of 1 indicates a complete linear relationship while a value of 0 means there is no relationship.
The strength of the relationship between 2 variables. Ex. -.78
Correlation is a statistical technique that is used to measure and describe the strength and direction of the relationship between two variables.
The direction of a linear relationship is positive when the two variables increase together and decrease together. The direction is negative if an increase in one variable is accompanied by a decrease in the other. The strength of the relationship tells you, in the context of a scatter plot of the two variables, how close the observations are to the line representing the linear relationship. There are various very closely related measures: regression coefficient or product moment correlation coefficient (PMCC) are commonly used. These can take any value between -1 and +1. A value of -1 represents a perfect negative relationship, +1 represents a perfect positive relationship. A value of 0 represents no linear relationship (there may be a non-linear one, though). Values near -1 or +1 are said show a strong linear relationship, values near 0 a weak one. There is no universal rule about when a relation goes from being strong to moderate to none.
A correlation coefficient represents the strength and direction of a linear relationship between two variables. A correlation coefficient close to zero indicates a weak relationship between the variables, where changes in one variable do not consistently predict changes in the other. However, it is important to note that a correlation coefficient of zero does not necessarily mean there is no relationship between the variables, as non-linear relationships may exist.
A measure of association. You might be thinking of the correlation coefficient in particular.