Make objective decisions about the validity of the hypotheses.
Chat with our AI personalities
I think you are asking: What is hypothesis testing in the field of statistics. See: http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
A hypothesis is the first step in running a statistical test (t-test, chi-square test, etc.) A NULL HYPOTHESIS is the probability that what you are testing does NOT occur. An ALTERNATIVE HYPOTHESIS is the probability that what you are testing DOES occur.
A non-directional research hypothesis is a kind of hypothesis that is used in testing statistical significance. It states that there is no difference between variables.
The difference between the null hypothesis and the alternative hypothesis are on the sense of the tests. In statistical inference, the null hypothesis should be in a positive sense such in a sense, you are testing a hypothesis you are probably sure of. In other words, the null hypothesis must be the hypothesis you are almost sure of. Just an important note, that when you are doing a tests, you are testing if a certain event probably occurs at certain level of significance. The alternative hypothesis is the opposite one.
Statistical tests compare the observed (or more extreme) values against what would be expected if the null hypothesis were true. If the probability of the observation is high you would retain the null hypothesis, if the probability is low you reject the null hypothesis. The thresholds for high or low probability are usually set arbitrarily at 5%, 1% etc. Strictly speaking, when rejecting the null hypothesis, you do not accept the alternative hypothesis because it is possible that neither are true and it is the model itself that is wrong.