answersLogoWhite

0


Best Answer

confidence level

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is confidence associated with an interval estimate is called the?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What is the relationship between confidence interval and standard deviation?

Short answer, complex. I presume you're in a basic stats class so your dealing with something like a normal distribution however (or something else very standard). You can think of it this way... A confidence interval re-scales margin of likely error into a range. This allows you to say something along the lines, "I can say with 95% confidence that the mean/variance/whatever lies within whatever and whatever" because you're taking into account the likely error in your prediction (as long as the distribution is what you think it is and all stats are what you think they are). This is because, if you know all of the things I listed with absolute certainty, you are able to accurately predict how erroneous your prediction will be. It's because central limit theory allow you to assume statistically relevance of the sample, even given an infinite population of data. The main idea of a confidence interval is to create and interval which is likely to include a population parameter within that interval. Sample data is the source of the confidence interval. You will use your best point estimate which may be the sample mean or the sample proportion, depending on what the problems asks for. Then, you add or subtract the margin of error to get the actual interval. To compute the margin of error, you will always use or calculate a standard deviation. An example is the confidence interval for the mean. The best point estimate for the population mean is the sample mean according to the central limit theorem. So you add and subtract the margin of error from that. Now the margin of error in the case of confidence intervals for the mean is za/2 x Sigma/ Square root of n where a is 1- confidence level. For example, confidence level is 95%, a=1-.95=.05 and a/2 is .025. So we use the z score the corresponds to .025 in each tail of the standard normal distribution. This will be. z=1.96. So if Sigma is the population standard deviation, than Sigma/square root of n is called the standard error of the mean. It is the standard deviation of the sampling distribution of all the means for every possible sample of size n take from your population ( Central limit theorem again). So our confidence interval is the sample mean + or - 1.96 ( Population Standard deviation/ square root of sample size. If we don't know the population standard deviation, we use the sample one but then we must use a t distribution instead of a z one. So we replace the z score with an appropriate t score. In the case of confidence interval for a proportion, we compute and use the standard deviation of the distribution of all the proportions. Once again, the central limit theorem tells us to do this. I will post a link for that theorem. It is the key to really understanding what is going on here!


Frequency approach for probability?

Well, that's not much of a question. Perhaps you are asking: What is the frequency interpretation of probability? This is called the classical interpretation of probability. Given n independent and identical trials with m occurrences of of a particular outcome, then the probability of this outcome, is equal to the limit of m/n as n goes to infinity. If you are asking: How can probabilities be estimated given data, based on frequency approach? A table is constructed, with intervals, and the number of events in each interval is calculated. The number of events divided by the total number of data is the relative frequency and an estimate of probability for the particular interval.


What is A line drawn in the midst of the points on a scatter plot in an attempt to estimate the mathematical relationship between the variables of the plot?

It is called the line of best fit


What are the main qualities of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.


What are the quality of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.

Related questions

Is confidence interval and confidence limits are same thing?

no,these are not the same thing.The values at each end of the interval are called the confidence limits.


When you use a confidence interval to reach a conclusion about the population mean you are applying a type of reasoning or logic called?

normal distribution


What about the lost interval?

Those digit who are not in the intervel are called lost interval


What is the interval from A to B flat?

The interval from A to Bb is a minor 2nd, also called a half step.


What is the relationship between confidence interval and standard deviation?

Short answer, complex. I presume you're in a basic stats class so your dealing with something like a normal distribution however (or something else very standard). You can think of it this way... A confidence interval re-scales margin of likely error into a range. This allows you to say something along the lines, "I can say with 95% confidence that the mean/variance/whatever lies within whatever and whatever" because you're taking into account the likely error in your prediction (as long as the distribution is what you think it is and all stats are what you think they are). This is because, if you know all of the things I listed with absolute certainty, you are able to accurately predict how erroneous your prediction will be. It's because central limit theory allow you to assume statistically relevance of the sample, even given an infinite population of data. The main idea of a confidence interval is to create and interval which is likely to include a population parameter within that interval. Sample data is the source of the confidence interval. You will use your best point estimate which may be the sample mean or the sample proportion, depending on what the problems asks for. Then, you add or subtract the margin of error to get the actual interval. To compute the margin of error, you will always use or calculate a standard deviation. An example is the confidence interval for the mean. The best point estimate for the population mean is the sample mean according to the central limit theorem. So you add and subtract the margin of error from that. Now the margin of error in the case of confidence intervals for the mean is za/2 x Sigma/ Square root of n where a is 1- confidence level. For example, confidence level is 95%, a=1-.95=.05 and a/2 is .025. So we use the z score the corresponds to .025 in each tail of the standard normal distribution. This will be. z=1.96. So if Sigma is the population standard deviation, than Sigma/square root of n is called the standard error of the mean. It is the standard deviation of the sampling distribution of all the means for every possible sample of size n take from your population ( Central limit theorem again). So our confidence interval is the sample mean + or - 1.96 ( Population Standard deviation/ square root of sample size. If we don't know the population standard deviation, we use the sample one but then we must use a t distribution instead of a z one. So we replace the z score with an appropriate t score. In the case of confidence interval for a proportion, we compute and use the standard deviation of the distribution of all the proportions. Once again, the central limit theorem tells us to do this. I will post a link for that theorem. It is the key to really understanding what is going on here!


The distance between two pitches is called a?

Interval.


What do you call the break between a play?

It is called an interval.


When tones are separated by the interval called an?

pitch range


What is the mid value of a class interval called?

100


What is the period of time between the parts of a play or concert called?

im not too sure but interval? or intermisson ?


What is unitidal interval for Goa India?

Unitidal interval measure's the time lag from the moon passing overhead, to the next high or low tide. It is also called the high water interval.


Confidence in and understanding of god is called?

This could be called 'faith'.