a) T or F The sampling distribution will be normal. Explain your answer. b) Find the mean and standard deviation of the sampling distribution. c) We pick one of our samples from the sampling distribution what is the probability that this sample has a mean that is greater than 109 ? Is this a usual or unusual event? these are the rest of the question.
NO
It will be the same as the distribution of the random variable itself.
A sampling distribution function is a probability distribution function. Wikipedia gives this definition: In statistics, a sampling distribution is the probability distribution, under repeated sampling of the population, of a given statistic (a numerical quantity calculated from the data values in a sample). I would add that the sampling distribution is the theoretical pdf that would ultimately result under infinite repeated sampling. A sample is a limited set of values drawn from a population. Suppose I take 5 numbers from a population whose values are described by a pdf, and calculate their average (mean value). Now if I did this many times (let's say a million times, close enough to infinity) , I would have a relative frequency plot of the mean value which will be very close to the theoretical sampling pdf.
a large number of samples of size 50 were selected at random from a normal population with mean and variance.The mean and standard error of the sampling distribution of the sample mean were obtain 2500 and 4 respectivly.Find the mean and varince of the population?
The mean of the sampling distribution is the population mean.
Also normally distributed.
a) T or F The sampling distribution will be normal. Explain your answer. b) Find the mean and standard deviation of the sampling distribution. c) We pick one of our samples from the sampling distribution what is the probability that this sample has a mean that is greater than 109 ? Is this a usual or unusual event? these are the rest of the question.
A set of probabilities over the sampling distribution of the mean.
NO
i dont no the answer
It will be the same as the distribution of the random variable itself.
A sample of 24 observations is taken from a population that has 150 elements. The sampling distribution of is
This is the Central Limit Theorem.
The statement is true that a sampling distribution is a probability distribution for a statistic.
A sampling distribution refers to the distribution from which data relating to a population follows. Information about the sampling distribution plus other information about the population can be inferred by appropriate analysis of samples taken from a distribution.
A sampling distribution function is a probability distribution function. Wikipedia gives this definition: In statistics, a sampling distribution is the probability distribution, under repeated sampling of the population, of a given statistic (a numerical quantity calculated from the data values in a sample). I would add that the sampling distribution is the theoretical pdf that would ultimately result under infinite repeated sampling. A sample is a limited set of values drawn from a population. Suppose I take 5 numbers from a population whose values are described by a pdf, and calculate their average (mean value). Now if I did this many times (let's say a million times, close enough to infinity) , I would have a relative frequency plot of the mean value which will be very close to the theoretical sampling pdf.