Zero
Details:
The "Standard Deviation" for ungrouped data can be calculated in the following steps:
Accordingly,
It is 0.
The standard deviation is the square root of the variance.
Yes. For this to happen, the values would all have to be the same.
Use %RSD when comparing the deviation for popolations with different means. Use SD to compare data with the same mean.
The 'standard deviation' in statistics or probability is a measure of how spread out the numbers are. It mathematical terms, it is the square root of the mean of the squared deviations of all the numbers in the data set from the mean of that set. It is approximately equal to the average deviation from the mean. If you have a set of values with low standard deviation, it means that in general, most of the values are close to the mean. A high standard deviation means that the values in general, differ a lot from the mean. The variance is the standard deviation squared. That is to say, the standard deviation is the square root of the variance. To calculate the variance, we simply take each number in the set and subtract it from the mean. Next square that value and do the same for each number in the set. Lastly, take the mean of all the squares. The mean of the squared deviation from the mean is the variance. The square root of the variance is the standard deviation. If you take the following data series for example, the mean for all of them is '3'. 3, 3, 3, 3, 3, 3 all the values are 3, they're the same as the mean. The standard deviation is zero. This is because the difference from the mean is zero in each case, and after squaring and then taking the mean, the variance is zero. Last, the square root of zero is zero so the standard deviation is zero. Of note is that since you are squaring the deviations from the mean, the variance and hence the standard deviation can never be negative. 1, 3, 3, 3, 3, 5 - most of the values are the same as the mean. This has a low standard deviation. In this case, the standard deviation is very small since most of the difference from the mean are small. 1, 1, 1, 5, 5, 5 - all the values are two higher or two lower than the mean. This series has the highest standard deviation.
It is 0.
The standard deviation is a measure of how much variation there is in a data set. It can be zero only if all the values are exactly the same - no variation.
Standard deviation has the same unit as the data set unit.
A sample with a standard deviation of zero indicates that all the values in that sample are identical; there is no variation among them. This means that every observation is the same, resulting in no spread or dispersion in the data. Consequently, the mean of the sample will equal the individual values, as there is no deviation from that mean.
The smaller the standard deviation, the closer together the data is. A standard deviation of 0 tells you that every number is the same.
Yes. It all the observed values are exactly the same then the SD will be 0.
The standard deviation is the square root of the variance.
The standard deviation itself is a measure of variability or dispersion within a dataset, not a value that can be directly assigned to a single number like 2.5. If you have a dataset where 2.5 is a data point, you would need the entire dataset to calculate the standard deviation. However, if you are referring to a dataset where 2.5 is the mean and all values are the same (for example, all values are 2.5), then the standard deviation would be 0, since there is no variability.
Standard deviation is a measure of the scatter or dispersion of the data. Two sets of data can have the same mean, but different standard deviations. The dataset with the higher standard deviation will generally have values that are more scattered. We generally look at the standard deviation in relation to the mean. If the standard deviation is much smaller than the mean, we may consider that the data has low dipersion. If the standard deviation is much higher than the mean, it may indicate the dataset has high dispersion A second cause is an outlier, a value that is very different from the data. Sometimes it is a mistake. I will give you an example. Suppose I am measuring people's height, and I record all data in meters, except on height which I record in millimeters- 1000 times higher. This may cause an erroneous mean and standard deviation to be calculated.
Yes. For this to happen, the values would all have to be the same.
It depends on WHAT the sd is the same as.
A standard deviation of zero means that all the data points are the same value.