A simple continuous distribution can take any value between two other values whereas a discrete distribution cannot.
Chat with our AI personalities
A discrete distribution is one in which the random variable can take only a limited number of values. A cumulative distribution, which can be discrete of continuous, is the sum (if discrete) or integral (if continuous) of the probabilities of all events for which the random variable is less than or equal to the given value.
A discrete probability distribution is defined over a set value (such as a value of 1 or 2 or 3, etc). A continuous probability distribution is defined over an infinite number of points (such as all values between 1 and 3, inclusive).
A convolution is a function defined on two functions f(.) and g(.). If the domains of these functions are continuous so that the convolution can be defined using an integral then the convolution is said to be continuous. If, on the other hand, the domaisn of the functions are discrete then the convolution would be defined as a sum and would be said to be discrete. For more information please see the wikipedia article about convolutions.
The probability mass function is used to characterize the distribution of discrete random variables, while the probability density function is used to characterize the distribution of absolutely continuous random variables. You might want to read more about this at www.statlect.com/prbdst1.htm (see the link below or on the right)
A random variable is a variable that can take different values according to a process, at least part of which is random.For a discrete random variable (RV), a probability distribution is a function that assigns, to each value of the RV, the probability that the RV takes that value.The probability of a continuous RV taking any specificvalue is always 0 and the distribution is a density function such that the probability of the RV taking a value between x and y is the area under the distribution function between x and y.