The probability of obtaining 4 tails when a coin is flipped 4 times is:
P(4T) = (1/2)4 = 1/16 = 0.0625
Then, the probability of obtaining at least 1 head when a coin is flipped 4 times is:
P(at least 1 head) = 1 - 1/16 = 15/16 = 0.9375
The probability is 1. I have flipped a coin a lot more than 7 times.
Multiply the probability by the number of times the experiment was carried out. 0.6x10=6
you are looking for the probability of getting one tail, two,......., and six this equivalent to saying 1 - the probability of not getting any tails (or getting 6 heads = (1/2)^6). P(X>=1) = 1 - (1/2)^6=
The probability that a coin flipped four consecutive times will always land on heads is 1 in 16. Since the events are sequentially unrelated, take the probability of heads in 1 try, 0.5, and raise that to the power of 4... 1 in 24 = 1 in 16
This is easiest calculated by calculating the probability that NO SINGLE heads is obtained; this is of course the complement of the question. The probability of this is 1/2 x 1/2 x 1/2 ... 7 times, in other words, (1/2)7. The complement, the probability that at least one head is obtained, is then of course 1 - (1/2)7, or a bit over 99%.
7/8
The probability is 5/16.
The probability is 1. I have flipped a coin a lot more than 7 times.
The empirical probability can only be determined by carrying out the experiment a very large number of times. Otherwise it would be the theoretical probability.
25%
Multiply the probability by the number of times the experiment was carried out. 0.6x10=6
you are looking for the probability of getting one tail, two,......., and six this equivalent to saying 1 - the probability of not getting any tails (or getting 6 heads = (1/2)^6). P(X>=1) = 1 - (1/2)^6=
The probability of landing on heads at least once is 1 - (1/2)100 = 1 - 7.9*10-31 which is extremely close to 1: that is, the event is virtually a certainty.
It is 0.2503, approx.
The sample space is HH, HT, TH, HH. Since the HH combination can occur once out of four times, the probability that if a coin is flipped twice the probability that both will be heads is 1/4 or 0.25.
The probability that a coin flipped four consecutive times will always land on heads is 1 in 16. Since the events are sequentially unrelated, take the probability of heads in 1 try, 0.5, and raise that to the power of 4... 1 in 24 = 1 in 16
This is easiest calculated by calculating the probability that NO SINGLE heads is obtained; this is of course the complement of the question. The probability of this is 1/2 x 1/2 x 1/2 ... 7 times, in other words, (1/2)7. The complement, the probability that at least one head is obtained, is then of course 1 - (1/2)7, or a bit over 99%.