answersLogoWhite

0

Assume the coin is fair, so there are equal amount of probabilities for the choices.

There are two possible choices for a flip of a fair coin - either a head or a tail. The probability of getting a head is ½. Similarly, the probability of getting a tail is ½.

Use Binomial to work out this problem. You should get:

(5 choose 4)(½)4(½).

  • (5 choose 4) indicates the total number of ways to obtain 4 tails in 5 flips.
  • (½)4 indicates the probability of obtaining 4 tails.
  • (½) indicates the probability of obtaining the remaining number of head.

Therefore, the probability is 5/32.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Statistics

What is the probability of obtaining exactly 4 tails from the 9 flips of the coin?

It is approx 0.2461


Suppose that you toss a coin and roll and die What is the probability of obtaining tails?

The probability to tossing a coin and obtaining tails is 0.5. Rolling a die has nothing to do with this outcome - it is unrelated.


What is the probability of getting 2 heads in a row followed by two tails on 4 flips of a coin?

1/16


If 3 fair coins are tossed what is the probability of getting exactly 2 tails?

The probability is 3/8 = 0.375


What is the probabilty that a coin will land on heads if flipped 8 times?

This is a probability question. Probabilities are calculated with this simple equation: Chances of Success / [Chances of Success + Chances of Failure (or Total Chances)] If I flip a coin, there is one chance that it will land on heads and one chance it will land on tails. If success = landing on heads, then: Chances of Success = 1 Chances of Failure = 1 Total Chances = 2 Thus the probability that a coin will land on heads on one flip is 1/2 = .5 = 50 percent. (Note that probability can never be higher than 100 percent. If you get greater than 100 you did the problem incorrectly) Your question is unclear whether you mean the probability that a coin will land on head on any of 8 flips or all of 8 flips. To calculate either you could write out all the possible outcomes of the flips (for example: heads-heads-tails-tails-heads-tails-heads-heads) but that would take forvever. Luckily, because the outcome of one coin flip does not affect the next flip you can calculate the total probability my multiplying the probabilities of each individual outcome. For example: Probability That All 8 Flips Are Heads = Prob. Flip 1 is Heads * Prob. Flip 2 is Heads * Prob. Flip 3 is Heads...and so on Since we know that the probability of getting heads on any one flips is .5: Probability That All 8 Flips Are Heads = .5 * .5 * .5 * .5 * .5 * .5 * .5 * .5 (or .58) Probability That All 8 Flips Are Heads = .00391 or .391 percent. The probability that you will flip a heads on any of flips is similar, but instead of thinking about what is the possiblity of success, it is easier to approach it in another way. The is only one case where you will not a heads on any coin toss. That is if every outcome was tails. The probability of that occurring is the same as the probability of getting a heads on every toss because the probability of getting a heads or tails on any one toss is 50 percent. (If this does not make sense redo the problem above with tails instead of heads and see if your answer changes.) However this is the probability of FAILURE not success. This is where another probability formula comes into play: Probability of Success + Probability of Failure = 1 We know the probability of failure in this case is .00391 so: Probability of Success + .00391 = 1 Probability of Success = .9961 or 99.61 percent. Therefore, the probability of flipping a heads at least once during 8 coin flips is 99.61 percent. The probability of flipping a heads every time during 8 coin flips is .391 percent.

Related Questions

What is the probability of obtaining exactly 4 tails from the 9 flips of the coin?

It is approx 0.2461


What is the probability of obtaining exactly two heads in three flips of a coin given that at least one is a head?

The probability of obtaining exactly two heads in three flips of a coin is 0.5x0.5x0.5 (for the probabilities) x3 (for the number of ways it could happen). This is 0.375. However, we are told that at least one is a head, so the probability that we got 3 tails was impossible. This probability is 0.53 or 0.125. To deduct this we need to divide the probability we have by 1-0.125 0.375/(1-0.125) = approximately 0.4286


What is the probability of obtaining exactly four tails in five flips of a coin if at least three are tails?

We need to determine the separate event. Let A = obtaining four tails in five flips of coin Let B = obtaining at least three tails in five flips of coin Apply Binomial Theorem for this problem, and we have: P(A | B) = P(A ∩ B) / P(B) P(A | B) means the probability of "given event B, or if event B occurs, then event A occurs." P(A ∩ B) means the probability in which both event B and event A occur at a same time. P(B) means the probability of event B occurs. Work out each term... P(B) = (5 choose 3)(½)³(½)² + (5 choose 4)(½)4(½) + (5 choose 5)(½)5(½)0 It's obvious that P(A ∩ B) = (5 choose 4)(½)4(½) since A ∩ B represents events A and B occurring at the same time, so there must be four tails occurring in five flips of coin. Hence, you should get: P(A | B) = P(A ∩ B) / P(B) = ((5 choose 4)(½)4(½))/((5 choose 3)(½)³(½)² + (5 choose 4)(½)4(½) + (5 choose 5)(½)5(½)0)


What is the probability of obtaining four tails in five flips of a coin?

Assume the coin is fair, so there are equal amount of probabilities for the choices.There are two possible choices for a flip of a fair coin - either a head or a tail. The probability of getting a head is ½. Similarly, the probability of getting a tail is ½.Use Binomial to work out this problem. You should get:(5 choose 4)(½)4(½).(5 choose 4) indicates the total number of ways to obtain 4 tails in 5 flips.(½)4 indicates the probability of obtaining 4 tails.(½) indicates the probability of obtaining the remaining number of head.Therefore, the probability is 5/32.


What is the probability of obtaining tails and a six?

this dick


What is the probability of 3 heads and 2 tails on five flips of a coin?

It is 0.3125


What is the probability of observing more than 35 tails in 50 flips?

It is 0.999531889


What is the probability of tossing tails twice on two flips of a coin?

1 in 4


What is the probability of obtaining tails or a three?

The answer depends on what the experiment is!


Suppose that you toss a coin and roll and die What is the probability of obtaining tails?

The probability to tossing a coin and obtaining tails is 0.5. Rolling a die has nothing to do with this outcome - it is unrelated.


What is the probability of obtaining tails or a five (Enter the probability as a fraction.)?

this isn giong to be my answerP(tails and 5) = 1 P(tails or 1) = 2


What is the expected number of flips of a coin to simulate a six-sided die?

Five coin flips. Any outcome on a six-sided die has a probability of 1 in 6. If I assume that the order of the outcome does not matter, the same probability can be achieved with five flips of the coin. The possible outcomes of five flips of a coin are as follows: 5 Heads 5 Tails 4 Heads and 1 Tails 4 Tails and 1 Heads 3 Heads and 2 Tails 3 Tails and 2 Heads For six possible outcomes.