The standard deviation is the square root of the variance.
Standard error of the mean (SEM) and standard deviation of the mean is the same thing. However, standard deviation is not the same as the SEM. To obtain SEM from the standard deviation, divide the standard deviation by the square root of the sample size.
It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).
It depends what you're asking. The question is extremely unclear. Accuracy of what exactly? Even in the realm of statistics an entire book could be written to address such an ambiguous question (to answer a myriad of possible questions). If you simply are asking what the relationship between the probability that something will occur given the know distribution of outcomes (such as a normal distribution), the mean of that that distribution, and the the standard deviation, then the standard deviation as a represents the spread of the curve of probability. This means that if you had a cure where 0 was the mean, and 3 was the standard deviation, the likelihood of observing a value of 12 (or -12) would be likely inaccurate if that was your prediction. However, if you had a mean of 0 and a standard deviation of 100, the likelihood of observing of a 12 (or -12) would be quite likely. This is simply because the standard deviation provides a simple representation of the horizontal spread of probability on the x-axis.
The correlation between an asset's real rate of return and its risk (as measured by its standard deviation) is usually:
Standard deviation is the square root of the variance.
The standard deviation is the square root of the variance.
There is absolutely no relationship to what you've asked. I'm pretty sure you simply framed the question in the wrong way, but to literally answer your question... none. Zero relationship. There's no such thing. There is however a relationship between standard deviation and a CI, but a CI can in no shape way or form influence a standard deviation.
Standard deviation doesn't have to be between 0 and 1.
Standard deviation is the variance from the mean of the data.
Standard error of the mean (SEM) and standard deviation of the mean is the same thing. However, standard deviation is not the same as the SEM. To obtain SEM from the standard deviation, divide the standard deviation by the square root of the sample size.
The distance between the middle and the inflection point is the standard deviation.
The mean is the average value and the standard deviation is the variation from the mean value.
* * *
It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).
Standard error is the difference between a researcher's actual findings and their expected findings. Standard error measures the accuracy of one's predictions. Standard deviation is the difference between the results of one's experiment as compared with other results within that experiment. Standard deviation is used to measure the consistency of one's experiment.
It depends what you're asking. The question is extremely unclear. Accuracy of what exactly? Even in the realm of statistics an entire book could be written to address such an ambiguous question (to answer a myriad of possible questions). If you simply are asking what the relationship between the probability that something will occur given the know distribution of outcomes (such as a normal distribution), the mean of that that distribution, and the the standard deviation, then the standard deviation as a represents the spread of the curve of probability. This means that if you had a cure where 0 was the mean, and 3 was the standard deviation, the likelihood of observing a value of 12 (or -12) would be likely inaccurate if that was your prediction. However, if you had a mean of 0 and a standard deviation of 100, the likelihood of observing of a 12 (or -12) would be quite likely. This is simply because the standard deviation provides a simple representation of the horizontal spread of probability on the x-axis.