answersLogoWhite

0

It is a measure of the spread of the distribution: whether all the observations are clustered around a central measure or if they are spread out.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran

Add your answer:

Earn +20 pts
Q: What standard deviation tells us about a distribution?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What role does the Central Limit Theorem play in evaluation of the confidence level or hypothesis testing?

Without getting into the mathematical details, the Central Limit Theorem states that if you take a lot of samples from a certain probability distribution, the distribution of their sum (and therefore their mean) will be approximately normal, even if the original distribution was not normal. Furthermore, it gives you the standard deviation of the mean distribution: it's σn1/2. When testing a statistical hypothesis or calculating a confidence interval, we generally take the mean of a certain number of samples from a population, and assume that this mean is a value from a normal distribution. The Central Limit Theorem tells us that this assumption is approximately correct, for large samples, and tells us the standard deviation to use.


What does the standard deviation tell us?

standard deviation is the square roots of variance, a measure of spread or variability of data . it is given by (variance)^1/2


Why use standard deviation In what situations is it special?

I will restate your question as "Why are the mean and standard deviation of a sample so frequently calculated?". The standard deviation is a measure of the dispersion of the data. It certainly is not the only measure, as the range of a dataset is also a measure of dispersion and is more easily calculated. Similarly, some prefer a plot of the quartiles of the data, again to show data dispersal.t Standard deviation and the mean are needed when we want to infer certain information about the population such as confidence limits from a sample. These statistics are also used in establishing the size of the sample we need to take to improve our estimates of the population. Finally, these statistics enable us to test hypothesis with a certain degree of certainty based on our data. All this stems from the concept that there is a theoretical sampling distribution for the statistics we calculate, such as a proportion, mean or standard deviation. In general, the mean or proportion has either a normal or t distribution. Finally, the measures of dispersion will only be valid, be it range, quantiles or standard deviation, require observations which are independent of each other. This is the basis of random sampling.


If mean is 8 median is 6 and standard deviation is 2 what is skewness?

Karl Pearson simplified the topic of skewness and gave us some formulas to help. The first is the Pearson mode or first skewness coefficient. It is defined by the (mean-median)/standard deviation. So in this case the Pearson mode is: (8-6)/2 =1 There is also the Pearson Median. This is also called second skewness coefficient. It is defined as 3(mean-median)/standard deviation which in this case is 6/2 =3 hence the distribution is positive skewed


What is the purpose of finding the standard deviation of a data set?

The purpose of obtaining the standard deviation is to measure the dispersion data has from the mean. Data sets can be widely dispersed, or narrowly dispersed. The standard deviation measures the degree of dispersion. Each standard deviation has a percentage probability that a single datum will fall within that distance from the mean. One standard deviation of a normal distribution contains 66.67% of all data in a particular data set. Therefore, any single datum in the data has a 66.67% chance of falling within one standard deviation from the mean. 95% of all data in the data set will fall within two standard deviations of the mean. So, how does this help us in the real world? Well, I will use the world of finance/investments to illustrate real world application. In finance, we use the standard deviation and variance to measure risk of a particular investment. Assume the mean is 15%. That would indicate that we expect to earn a 15% return on an investment. However, we never earn what we expect, so we use the standard deviation to measure the likelihood the expected return will fall away from that expected return (or mean). If the standard deviation is 2%, we have a 66.67% chance the return will actually be between 13% and 17%. We expect a 95% chance that the return on the investment will yield an 11% to 19% return. The larger the standard deviation, the greater the risk involved with a particular investment. That is a real world example of how we use the standard deviation to measure risk, and expected return on an investment.