Standard Deviation tells you how spread out the set of scores are with respects to the mean. It measures the variability of the data. A small standard deviation implies that the data is close to the mean/average (+ or - a small range); the larger the standard deviation the more dispersed the data is from the mean.
The standard deviation tells us nothing about the mean.
1.41
It tells you the average of all of your data. So then you know about the answer to your question for your data.
The purpose of obtaining the standard deviation is to measure the dispersion data has from the mean. Data sets can be widely dispersed, or narrowly dispersed. The standard deviation measures the degree of dispersion. Each standard deviation has a percentage probability that a single datum will fall within that distance from the mean. One standard deviation of a normal distribution contains 66.67% of all data in a particular data set. Therefore, any single datum in the data has a 66.67% chance of falling within one standard deviation from the mean. 95% of all data in the data set will fall within two standard deviations of the mean. So, how does this help us in the real world? Well, I will use the world of finance/investments to illustrate real world application. In finance, we use the standard deviation and variance to measure risk of a particular investment. Assume the mean is 15%. That would indicate that we expect to earn a 15% return on an investment. However, we never earn what we expect, so we use the standard deviation to measure the likelihood the expected return will fall away from that expected return (or mean). If the standard deviation is 2%, we have a 66.67% chance the return will actually be between 13% and 17%. We expect a 95% chance that the return on the investment will yield an 11% to 19% return. The larger the standard deviation, the greater the risk involved with a particular investment. That is a real world example of how we use the standard deviation to measure risk, and expected return on an investment.
standard deviation is the square roots of variance, a measure of spread or variability of data . it is given by (variance)^1/2
It means that the data are spread out around their central value.
the mean tells us a about the average of the data. it's what most people received averaged up. Ex. 19, 5, 3, 20, 11,and 15. then you add them up the addition answer is 73. then you divide 73 by the amount of numbers in the data, 6. 73/6=12.1. this tells us that roughly, the average of these 6 people is 12.1. hope that helps.
I will restate your question as "Why are the mean and standard deviation of a sample so frequently calculated?". The standard deviation is a measure of the dispersion of the data. It certainly is not the only measure, as the range of a dataset is also a measure of dispersion and is more easily calculated. Similarly, some prefer a plot of the quartiles of the data, again to show data dispersal.t Standard deviation and the mean are needed when we want to infer certain information about the population such as confidence limits from a sample. These statistics are also used in establishing the size of the sample we need to take to improve our estimates of the population. Finally, these statistics enable us to test hypothesis with a certain degree of certainty based on our data. All this stems from the concept that there is a theoretical sampling distribution for the statistics we calculate, such as a proportion, mean or standard deviation. In general, the mean or proportion has either a normal or t distribution. Finally, the measures of dispersion will only be valid, be it range, quantiles or standard deviation, require observations which are independent of each other. This is the basis of random sampling.
It allows you to understand, or comprehend the average fluctuation to the average. example: the average height for adult men in the United States is about 70", with a standard deviation of around 3". This means that most men (about 68%, assuming a normal distribution) have a height within 3" of the mean (67"- 73"), one standard deviation, and almost all men (about 95%) have a height within 6" of the mean (64"-76"), two standard deviations. In summation standard deviation allows us to see the 'average' as a whole.
It is a measure of the spread of the distribution: whether all the observations are clustered around a central measure or if they are spread out.
US IQ standard Deviation is 16.