answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Why market beta is always 1 How is it calculated?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

Why the value of correlation coefficient is always between -1 and 1?

Why the value of correlation coefficient is always between -1 and 1?


How gamma are members of the exponential family prove?

Think you've got this backwards. The exponential probability distribution is a gamma probability distribution only when the first parameter, k is set to 1. Consistent with the link below, if random variable X is distributed gamma(k,theta), then for gamma(1, theta), the random variable is distributed exponentially. The gamma function in the denominator is equal to 1 when k=1. The denominator will reduce to theta when k = 1. The first term will be X0 = 1. using t to represent theta, we have f(x,t) = 1/t*exp(-x/t) or we can substitute L = 1/t, and write an equivalent function: f(x;L) = L*exp(-L*x) for x > 0 See: http://en.wikipedia.org/wiki/Gamma_distribution [edit] To the untrained eye the question might seem backwards after a quick google search, yet qouting wikipedia lacks deeper insight in to the question: What the question is referring to is a class of functions that factor into the following form: f(y;theta) = s(y)t(theta)exp[a(y)b(theta)] = exp[a(y)b(theta) + c(theta) + d(y)] where a(y), d(y) are functions only reliant on y and where b(theta) and c(theta) are answers only reliant on theta, an unkown parameter. if a(y) = y, the distribution is said to be in "canonical form" and b(theta) is often called the "natural parameter" So taking the gamma density function, where alpha is a known shape parameter and the parameter of interest is beta, the scale parameter. The density function follows as: f(y;beta) = {(beta^alpha)*[y^(alpha - 1)]*exp[-y*beta]}/gamma(alpha) where gamma(alpha) is defined as (alpha - 1)! Hence the gamma-density can be factored as follows: f(y;beta) = {(beta^alpha)*[y^(alpha - 1)]*exp[-y*beta]}/gamma(alpha) =exp[alpha*log(beta) + (alpha-1)*log(y) - y*beta - log[gamma(alpha)] from the above expression, the canonical form follows if: a(y) = y b(theta) = -beta c(theta) = alpha*log(beta) d(y) = (alpha - 1)*log(y) - log[gamma(alpha)] which is sufficient to prove that gamma distributions are part of the exponential family.


A stock market analyst estimates that the odds in favor of a stock market going up are 8 to 1. What is the probability of the stock’s not going up in value?

If it has an 8 to 1 chance of going up in value, then there is also a 1 to 8 chance that it won't.


What is the probability of sun rising in east?

On earth it is 1/1 or a certainty


How is the interquartile range calculated?

Find the difference between the values for quartile 3 and quartile 1.