answersLogoWhite

0

Assuming that the angles are all stated in degrees: sin(45) = cos(45) = 1/2 sqrt(2) sin(45) cos(45) = (1/2)2 x (2) = 1/2 sin(230) = - 0.7660444 sin(45) cos(45) - sin(230) = 0.5 + 0.7660444 = 1.2660444 (rounded)

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve

Add your answer:

Earn +20 pts
Q: Find out value of sin 45 cos 45 - sin 230?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

Is sin 2x equals 2 sin x cos x an identity?

YES!!!! Sin(2x) = Sin(x+x') Sin(x+x') = SinxCosx' + CosxSinx' I have put a 'dash' on an 'x' only to show its position in the identity. Both x & x' carry the same value. Hence SinxCosx' + CosxSinx' = Sinx Cos x + Sinx'Cosx => 2SinxCosx


If cos and theta 0.65 what is the value of sin and theta?

You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.


How tan9-tan27-tan63 tan81 equals 4?

tan(9) + tan(81) = sin(9)/cos(9) + sin(81)/cos(81)= {sin(9)*cos(81) + sin(81)*cos(9)} / {cos(9)*cos(81)} = 1/2*{sin(-72) + sin(90)} + 1/2*{sin(72) + sin(90)} / 1/2*{cos(-72) + cos(90)} = 1/2*{sin(-72) + 1 + sin(72) + 1} / 1/2*{cos(-72) + 0} = 2/cos(72) since sin(-72) = -sin(72), and cos(-72) = cos(72) . . . . . (A) Also tan(27) + tan(63) = sin(27)/cos(27) + sin(63)/cos(63) = {sin(27)*cos(63) + sin(63)*cos(27)} / {cos(27)*cos(63)} = 1/2*{sin(-36) + sin(90)} + 1/2*{sin(72) + sin(36)} / 1/2*{cos(-36) + cos(90)} = 1/2*{sin(-36) + 1 + sin(36) + 1} / 1/2*{cos(-36) + 0} = 2/cos(36) since sin(-36) = -sin(36), and cos(-36) = cos(36) . . . . . (B) Therefore, by (A) and (B), tan(9) - tan(27) - tan(63) + tan(81) = tan(9) + tan(81) - tan(27) - tan(63) = 2/cos(72) – 2/cos(36) = 2*{cos(36) – cos(72)} / {cos(72)*cos(36)} = 2*2*sin(54)*sin(18)/{cos(72)*cos(36)} . . . . . . . (C) But cos(72) = sin(90-72) = sin(18) so that sin(18)/cos(72) = 1 and cos(36) = sin(90-36) = sin(54) so that sin(54)/cos(36) = 1 and therefore from C, tan(9) – tan(27) – tan(63) + tan(81) = 2*2*1*1 = 4


What is cos2 A?

Cos(2A) = Cos(A + A) Double Angle Indentity Cos(A+A) = Cos(A)Cos(A) - Sin(A)Sin(A) => Cos^(2)[A] - SIn^(2)[A] => Cos^(2)[A] - (1 - Cos^(2)[A] => 2Cos^(2)[A] - 1


What is the half angle formula to find the exact value for tan 165?

tan u/2 = sin u/1+cos u