Use these identities: sin2(x) + cos2(x) = 1, and tan(x) = sin(x)/cos(x) For clarity, the functions are written here without their arguments (the "of x" part). (1 - sin2) = cos2 (1 + tan2) = (1 + sin2/cos2) = (cos2+sin2) / cos2 = 1/cos2 Multiply them: (cos2) times (1/cos2) = 1'QED'
To determine what negative sine squared plus cosine squared is equal to, start with the primary trigonometric identity, which is based on the pythagorean theorem...sin2(theta) + cos2(theta) = 1... and then solve for the question...cos2(theta) = 1 - sin2(theta)2 cos2(theta) = 1 - sin2(theta) + cos2(theta)2 cos2(theta) - 1 = - sin2(theta) + cos2(theta)
cos2A = cos^2A-sin^2A (2A means the double angle .. :|)
cos(3t) = cos(2t + t) = cos(2t)*cos(t) - sin(2t)*sin(t) = [cos2(t) - sin2(t)]*cos(t) - 2*cos(t)*sin(t)*sin(t) = [cos2(t) - sin2(t)]*cos(t) - 2*cos(t)*sin2(t) then, since sin2(t) = 1 - cos2(t) = [2*cos2(t) - 1]*cos(t) - 2*cos(t)*[1 - cos2(t)] = 2*cos3(t) - cos(t) - 2*cos(t) + 2*cos3(t) = 4*cos3(t) - 3*cos(t)
3
cos2 + cos2tan2 = cos2 + cos2*sin2/cos2 = cos2 + sin2 which is identically equal to 1. So the solution is all angles.
sin(x) = sqrt[ 1 - cos2(x) ]
Cos2 doesn't equal pi; Cos2 equals roughly -0.416 (with radians).
sec2(x) - tan2(x)= 1/cos2(x) - sin2(x)/cos2(x)= (1 - sin2(x)) / cos2(x)= cos2(x) / cos2(x)= 1
-cos2(x)1 = sin2(x) +cos2(x)1 - cos2(x) = sin2(x)-cos2(x) = sin2(x) - 1
Use these identities: sin2(x) + cos2(x) = 1, and tan(x) = sin(x)/cos(x) For clarity, the functions are written here without their arguments (the "of x" part). (1 - sin2) = cos2 (1 + tan2) = (1 + sin2/cos2) = (cos2+sin2) / cos2 = 1/cos2 Multiply them: (cos2) times (1/cos2) = 1'QED'
sin2 + cos2 = 1 So, (1 - 2*cos2)/(sin*cos) = (sin2 + cos2 - 2*cos2)/(sin*cos) = (sin2 - cos2)/(sin*cos) = sin2/(sin*cos) - cos2/(sin*cos) = sin/cos - cos-sin = tan - cot
To determine what negative sine squared plus cosine squared is equal to, start with the primary trigonometric identity, which is based on the pythagorean theorem...sin2(theta) + cos2(theta) = 1... and then solve for the question...cos2(theta) = 1 - sin2(theta)2 cos2(theta) = 1 - sin2(theta) + cos2(theta)2 cos2(theta) - 1 = - sin2(theta) + cos2(theta)
No.Remember: sin2 + cos2 = 1So, in place of (1 - 2 sin2) we can write (sin2 + cos2 - 2 sin2).Massage that around slightly: (sin2 + cos2 - 2 sin2) = cos2 - sin2That's not equal to (sin2 - cos2), which is the original question we were asked.
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
Let s = sin x; c = cos x. By definition, sec x = 1/cos x = 1/c; and tan x = (sin x) / (cos x) = s/c. We know, also, that s2 + c2 = 1. Then, dividing through by c2, we have, (s2/c2) + 1 = (1/c2), or (s/c)2 + 1 = (1/c)2; in other words, we have, tan2 x + 1 = sec2 x.
-23 The absolute value of -23 and 23 is 23.