We stat with the law of cosines, which we can assume to be true:
* c2 = a2 + b2 - 2ab*cos(C) Then rearrange it:
* cos(C) = a2 + b2 - c2/2ab Use the identity sin(x)=SQRT(1-cos(x))
* sin(C) = SQRT( 1 - (a2 + b2 - c2/2ab)2) Use the operator A = 1/2ab*sin(C) where A is area. Also, set one equal to 4a2b2 and factor it out.
* 2A/ab = SQRT(4a2b2 - (a2 + b2 - c2)2)/2ab ab's cancel, and the term inside the square root is the difference of two squares.
* A = 1/4*SQRT((2ab - (a2 + b2 - c2))(2ab + (a2 + b2 - c2))) when the two groups are simplified, the can be factored in binomial squares.
* A = 1/4*SQRT((c2 - (a - b)2)((a + b)2 - c2) Once again, we have differences of squares.
* A = 1/4*SQRT((c - (a - b))(c + (a - b))((a + b) - c)((a + b + c)) Simplify.
* A = 1/4*SQRT((c + b - a)(c + a - b)(a + b - c)(a + b +c)) Here comes the tricky part. We have four parts here. Three have two terms positive and one negative. Having a + b + c is like having the P. If we have a + b - c, that is like saying P - 2c, right? So to make it even easier, we can call s, the semi-perimeter, P/2. Then we can say a + b - c is 2s - 2c, or 2(s - c). We can apply that to all parts except the last one, which is just 2s.
* A = 1/4*SQRT(2(s - a)*2(s - b)*2(s - c)*2s) The two's can multiply together to 16 and come out of the root, canceling with the 1/4. we are left with good old Heron's formula.
* A = SQRT(s(s - a)(s - b)(s - c))
It was invented sometim but if you find out put it on here! Love Megan
An SSA triangle is ambiguous.Suppose the triangle is ABC and, with conventional labelling, you know a, b and angle A.Then by the cosine rule, a2 = b2 + c2 - 2bc*Cos(A)This equation will give rise to a quadratic equation in cwhich has 2 solutions. The perimeter is then a + b + c1 or a + b + c2
It's possible that either the angles or sides are labeled according to length or size.
The order of them does not matter at all, as long as the sides are consistently opposite the angles with the corresponding letter (e.g. side "A" is always opposite angle "a").
The explicit formula for a sequence is a formula that allows you to find the nth term of the sequence directly without having to find all the preceding terms. To find the explicit formula for a sequence, you need to identify the pattern or rule that governs the sequence. This can involve looking at the differences between consecutive terms, the ratios of consecutive terms, or any other mathematical relationship that exists within the sequence. Once you have identified the pattern, you can use it to create a formula that will generate any term in the sequence based on its position (n) in the sequence.
This is known as the Cosine Rule.
the cosine rule is derived from the division of the adjacent side & hypotenuse
You can use the cosine rule to calculate the central angle.
The sine rule is a comparison of ratios: (sin A)/a = (sin B)/b = (sin C)/c. The cosine rule looks similar to the theorem of Pythagoras: c2 = a2 + b2 - 2ab cos C.
It was invented sometim but if you find out put it on here! Love Megan
The answer depends on the information that you have: it could be the sine rule or the cosine rule.
No. Sine rule (and cosine rule) apply to all triangles in Euclidean space (plane geometry). A simplification occurs when there is a right angle because the sine of the right angle is 1 and the cosine is 0. Thus you get Pythagoras theorem for right triangles.
It follows from the cyclical symmetry of the cosine rule.
If you do not know only a side length you cannot. If you know all three side lengths then you can use the cosine rule. You can continue using the cosine rule for the other two angles but, once you have one angle, it is simpler to use the sine rule.
Using the cosine rule the biggest angle is: 82.81924422 degrees Using radius formula for circumcircle of a triangle the radius is: 3.023715784 cm
The following proof is trigonometric, and basically uses the cosine rule. First we compute the cosine squared in terms of the sides, and then the sine squared which we use in the formula A=1/2bc·sinA to derive the area of the triangle in terms of its sides, and thus prove Heron's formula.We use the relationship x2−y2=(x+y)(x−y) [difference between two squares] [1.2]Finding the cosine squared in terms of the sidesFrom the cosine rule: We have:[1.3]Rearranging:[1.4]Because we want the sine, we first square the cosine:[1.5]Finding the SineTo use in: [1.6]Using Equation 1.5 in 1.6, we have:[1.7]Bringing all under the same denominator:[1.8]Using the difference between two squares (Equation 1.2)[1.9]Putting the above into a form where we can use the difference between two squares again we have:[1.10]Actually using the difference between two squares in both brackets, we find:[1.11]Substituting (a+b+c) for 2s, (b+c-a) for 2s-2a, etc:[1.12]Taking the square root:[1.13]Finding the AreaRecalling:[1.14]We have:[1.15]And simplified:
Using cosine rule largest angle is: 106.23 degrees Using area formula: 0.5*9*8.5*sin(106.23) = 36.726 square mm