Do you mean sin(x)=sqrt(3)/2? IF so, look at at 30/60/90 triangle. We see the sin 60 degrees is square (root of 3)/2
Chat with our AI personalities
one over root of 2 or (1/square root of 2) or 1/1.414213562 or 0.707106781
Sin(30) = 1/2 Sin(45) = root(2)/2 Sin(60) = root(3)/2 Cos(30) = root(3)/2 Cos(45) = root(2)/2 Cos(60) = 1/2 Tan(30) = root(3)/3 Tan(45) = 1 Tan(60) = root(3) Csc(30) = 2 Csc(45) = root(2) Csc(60) = 2root(3)/3 Sec(30) = 2root(3)/3 Sec(45) = root(2) Sec(60) = 2 Cot(30) = root(3) Cot(45) = 1 Cot(60) = root(3)/3
cosine 45° = √2/2 (Square root of 2 over 2)
sin x + csc x = 2 sin x + 1/sin x = 2 (sin2 x + 1)/sin x = 2/1 (cross multiply) sin2 x + 1 = 2sin x (subtract 2sin x to both sides) sin2 x - 2sinx + 1 = 0 (sin x - 1)2 = 0 (take the square root of both sides) sin x - 1 = 0 (add 1 to both sides) sin x = 1 x = sin-1 1 = 90⁰ 40x = 40(90⁰) = 3,600⁰ sin 40x = sin (3,600⁰ ) = 0 50x = 50(90⁰) = 4500⁰ sin 50x = sin (4,500⁰) = 0, so that csc 50x is undefined, we cannot divide by 0. Then, sin40x + csc50x is undefined.
Tan(x) = Sin(x) / Cos(x) Hence Sin(x) / Cos(x) = Cos(x) Sin(x) = Cos^(2)[x] Sin(x) = 1 - Sin^(2)[x] Sin^(2)[x] + Sin(x) - 1 = 0 It is now in Quadratic form to solve for Sin(x) Sin(x) = { -1 +/-sqrt[1^(2) - 4(1)(-1)]} / 2(1) Sin(x) = { -1 +/-sqrt[5[} / 2 Sin(x) = {-1 +/-2.236067978... ] / 2 Sin(x) = -3.236067978...] / 2 Sin(x) = -1.61803.... ( This is unresolved as Sine values can only range from '1' to '-1') & Sin(x) = 1.236067978... / 2 Sin(x) = 0.618033989... x = Sin^(-1) [ 0.618033989...] x = 38.17270765.... degrees.