if tan x = cos x then
sin x / cos x = cos x
=> sin x = cos x cos x
=> sin x = cos2 x
=> sin x = 1 - sin2x
=> sin2x + sin x - 1 = 0
Using the quadratic formula
=> 1. sin x = 0.61803398874989484820458683436564
=> x = sin-1 (0.61803398874989484820458683436564)
or
=> 2. sin x = -1.6180339887498948482045868343656
=> x = sin-1 (-1.6180339887498948482045868343656)
sin is short for sine. Sin(x) means the ratio of the side of a right triange opposite the angle 'x' divided by the length of the hypotenuse. cos is short for cosine. Cos(x) is equal to the similar ratio of the side adjacent to the angle 'x' divided by the length of the hypotenuse. tan is short for tangent. Tan(x) is equal to the ratio of the opposite side divided by the adjacent side. This is the same as sin(x)/cos(x).
cos(x)=sin(x-tau/4) tan(x)=sin(x)/cos(x) sin(x)=tan(x)*cos(x) cos(x)=tan(x-tau/4)*cos(x-tau/4) you can see that we have some circular reasoning going on, so the best we can do is express it as a combination of sines and cotangents: cos(x)=1/cot(x-tau/4)*sin(x-tau/2) tau=2*pi
-1
I suggest you convert everything to sines and cosines, and then try to simplify. For example, sec x = 1 / cos x, tan x = sin x / cos x, etc. Then - depending on the problem requirements - you either verify whether they are always equal or not, or determine for what values of x they are equal.
The period of the function y= tan(x) is pie The periods of the functions y= cos(x) and y= sin(x) is 2pie
tan x
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
The definition of tan(x) = sin(x)/cos(x). By this property, cos(x)tan(x) = sin(x).
A useful property in Trigonometry is: tan(x) = sin(x) / cos(x) So, cos(x) tan(x) = cos(x) [ sin(x) / cos (x)] = sin(x)
tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x
Rewrite sec x as 1/cos x. Then, sec x sin x = (1/cos x)(sin x) = sin x/cos x. By definition, this is equal to tan x.
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)
(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0
Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]
If y = sin(cos(tan(x))) Using the chain rule: (f(g(x)))' = f'(g(x)).g'(x) Then dy/dx = cos(cos(tan(x))).-sin(tan(x)).sec2(x) = -cos(cos(tan(x))).sin(tan(x)).sec2(x) Unfortunately I don't think this can be simplified much more. ( sec = 1/cos )
sin is short for sine. Sin(x) means the ratio of the side of a right triange opposite the angle 'x' divided by the length of the hypotenuse. cos is short for cosine. Cos(x) is equal to the similar ratio of the side adjacent to the angle 'x' divided by the length of the hypotenuse. tan is short for tangent. Tan(x) is equal to the ratio of the opposite side divided by the adjacent side. This is the same as sin(x)/cos(x).
You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.