The inexact value of tan 330 is -0.577350, to six significant places.
The exact value cannot be represented as a single number because it is a non terminating decimal. To represent it exactly, consider that tan x is sin x over cos x, and that sin 330 is -0.5 and cos 330 is square root of 0.75. As a result, the exact value of tan 330 is -0.5 divided by square root of 0.75.
tan(-60 degrees) = - sqrt(3)
The exact value of 60 degrees would be 1/2. This is a math problem.
tan u/2 = sin u/1+cos u
To find the exact value of tan 105°. First, of all, we note that sin 105° = cos 15°; and cos 105° = -sin 15°. Thus, tan 105° = -cot 15° = -1 / tan 15°. Using the formula tan(α - β) = (tan α - tan β) / (1 + tan α tan β); and using, also, the familiar values tan 45° = 1, and tan 30° = ½ / (½√3) = 1/√3 = ⅓√3; we have, tan 15° = (1 - ⅓√3) / (1 + ⅓√3); whence, cot 15° = (1 + ⅓√3) / (1 - ⅓√3) = (√3 + 1) / (√3 - 1) {multiplying through by √3} = (√3 + 1)2 / (√3 + 1)(√3 - 1) = (3 + 2√3 + 1) / (3 - 1) = (4 + 2√3) / 2 = 2 + √3. Therefore, tan 105° = -cot 15° = -2 - √3, which is the result we sought. We are asked the exact value of tan 105°, which we gave above. We can test the above result to 9 decimal places, say, by means of a calculator: -2 - √3 = -3.732050808; and tan 105° = -3.732050808; thus indicating that we have probably got the right result.
tan(22.5)=0.414213562
tan(135 degrees) = negative 1.
tan(-60 degrees) = - sqrt(3)
tan 2 pi = tan 360º = 0
tan 165/2 = 1.068691
tan(pi/3)= sqrt(3)
1
The exact value of 60 degrees would be 1/2. This is a math problem.
1/sqrt(3)
tan u/2 = sin u/1+cos u
cot(15)=1/tan(15) Let us find tan(15) tan(15)=tan(45-30) tan(a-b) = (tan(a)-tan(b))/(1+tan(a)tan(b)) tan(45-30)= (tan(45)-tan(30))/(1+tan(45)tan(30)) substitute tan(45)=1 and tan(30)=1/√3 into the equation. tan(45-30) = (1- 1/√3) / (1+1/√3) =(√3-1)/(√3+1) The exact value of cot(15) is the reciprocal of the above which is: (√3+1) /(√3-1)
Assuming that means degrees, that's the same as -30 degrees. The sine of -30 degrees is exactly -0.5, the cosine is +root(3)/2, or about 0.866. You can deduce the remaining trigonometric functions from these; for example, tan(x) = sin(x) / cos(x).
To find the exact value of tan 105°. First, of all, we note that sin 105° = cos 15°; and cos 105° = -sin 15°. Thus, tan 105° = -cot 15° = -1 / tan 15°. Using the formula tan(α - β) = (tan α - tan β) / (1 + tan α tan β); and using, also, the familiar values tan 45° = 1, and tan 30° = ½ / (½√3) = 1/√3 = ⅓√3; we have, tan 15° = (1 - ⅓√3) / (1 + ⅓√3); whence, cot 15° = (1 + ⅓√3) / (1 - ⅓√3) = (√3 + 1) / (√3 - 1) {multiplying through by √3} = (√3 + 1)2 / (√3 + 1)(√3 - 1) = (3 + 2√3 + 1) / (3 - 1) = (4 + 2√3) / 2 = 2 + √3. Therefore, tan 105° = -cot 15° = -2 - √3, which is the result we sought. We are asked the exact value of tan 105°, which we gave above. We can test the above result to 9 decimal places, say, by means of a calculator: -2 - √3 = -3.732050808; and tan 105° = -3.732050808; thus indicating that we have probably got the right result.