tan(-x) = -tan(x)
1 (sec x)(sin x /tan x = (1/cos x)(sin x)/tan x = (sin x/cos x)/tan x) = tan x/tan x = 1
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)
tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x
csc[]tan[] = sec[]. L: Change csc[] into one over sin[]. Change tan[] into sin[] over cos[]. R: Change sec[] into one over cos[]. 1/sin[] times sin[]/cos[] = 1/cos[]. L: To multiply 2 fractions, multiply the numerators, and multiply the denominators, and put the numerators' product over the denominators' product. R: Nothing more to do. sin[]/sin[]cos[] = 1/cos[]. L: You have a sin[] on both top and bottom. Cross them off to get a one on the top. 1/cos[] = 1/cos[]. Done. [] is theta. L is the left side of the equation. R is the right side.
tan(pi/3)= sqrt(3)
1/sqrt(3)
tan (pi) / 1 is zero. tan (pi / 1) is zero.
tan(135 degrees) = negative 1.
tan(-60 degrees) = - sqrt(3)
The inexact value of tan 330 is -0.577350, to six significant places. The exact value cannot be represented as a single number because it is a non terminating decimal. To represent it exactly, consider that tan x is sin x over cos x, and that sin 330 is -0.5 and cos 330 is square root of 0.75. As a result, the exact value of tan 330 is -0.5 divided by square root of 0.75.
tan 2 pi = tan 360º = 0
tan 165/2 = 1.068691
The exact value of 60 degrees would be 1/2. This is a math problem.
tan u/2 = sin u/1+cos u
cot(15)=1/tan(15) Let us find tan(15) tan(15)=tan(45-30) tan(a-b) = (tan(a)-tan(b))/(1+tan(a)tan(b)) tan(45-30)= (tan(45)-tan(30))/(1+tan(45)tan(30)) substitute tan(45)=1 and tan(30)=1/√3 into the equation. tan(45-30) = (1- 1/√3) / (1+1/√3) =(√3-1)/(√3+1) The exact value of cot(15) is the reciprocal of the above which is: (√3+1) /(√3-1)
The value of tan x would not change.