answersLogoWhite

0

first prove *: if A intersect B is independent, then A intersect B' is independent. (this is on wiki answers)

P(A' intersect B') = P(B')P(A'|B') by definition

= P(B')[1-P(A|B')] since 1 = P(A) + P(A')

= P(B')[1 - P(A)] from the first proof *

= P(B')P(A') since 1 = P(A) + P(A')

conclude with P(A' intersect B') = P(B')P(A') and is therefore independent by definition.

***note*** i am a student in my first semester of probability so this may be incorrect, but i used the first proof* so i figured i would proof this one to kinda "give back".

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
JudyJudy
Simplicity is my specialty.
Chat with Judy
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
More answers

Without knowing what A and B are then it is not really possible to know how to prove that they are independent events. The information on what A and B are is needed.

User Avatar

Wiki User

10y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Prove that the complement of A and B are independent events?
Write your answer...
Submit
Still have questions?
magnify glass
imp