100%
The spinner has five equal sections marked 1 through 5, with the even numbers being 2 and 4. There are 2 favorable outcomes (landing on an even number) out of a total of 5 possible outcomes. Therefore, the probability of landing on an even number is ( \frac{2}{5} ) or 40%.
To determine the probability of the spinner landing on an even number, you need to know the total number of sections on the spinner and how many of those sections contain even numbers. The probability is calculated by dividing the number of even-numbered sections by the total number of sections. For example, if the spinner has 8 sections numbered 1 through 8, there are 4 even numbers (2, 4, 6, 8), resulting in a probability of 4/8 or 1/2.
1/2
1/8 or .125 or 12.5%
The probability is one in four, or 25%.
Four.Four.Four.Four.
6-52
6-52
The probability is 3/7.
The probability is 5/9.
Spinning a number less than 4 and spinning at 6
To calculate the probability of spinning a multiple of 3 on a spinner labeled 1 through 10, we first determine the total number of favorable outcomes. The multiples of 3 between 1 and 10 are 3, 6, and 9. Therefore, there are 3 favorable outcomes. Since there are a total of 10 equally likely outcomes on the spinner, the probability of spinning a multiple of 3 is 3/10 or 0.3.