A cubic has from 1 to 3 real solutions. The fact that every cubic equation with real coefficients has at least 1 real solution comes from the intermediate value theorem. The discriminant of the equation tells you how many roots there are.
A quadratic equation has two roots. They may be similar or dissimilar. As the highest power of a quadratic equation is 2 , there are 2 roots. Similarly, in the cubic equation, the highest power is 3, so it has three equal or unequal roots. So the highest power of an equation is the answer to the no of roots of that particular equation.
If the discriminant of a quadratic equation is less than zero then it will not have any real roots.
It will then have 2 different roots If the discriminant is zero than it will have have 2 equal roots
The answer is two. Despite its name seems to suggest something to do with four, in a quadratic equation the unknown appears at most to the power of two and so is said to be of second degree. The theorem than pertains here is that the number of roots an equation has is equal to its degrees. However, some of the roots can be repeated - an nth degree equation need not have n different roots. Also the roots do not have to be real. However complex roots ( no real) come in pairs so an equation of odd degree must have at least one real root. A quadratic possibly has no real roots.
That depends on the equation.
2 roots
The roots of the equation
If the discriminant of the quadratic equation is zero then it will have 2 equal roots. If the discriminant of the quadratic equation is greater than zero then it will have 2 different roots. If the discriminant of the quadratic equation is less than zero then it will have no roots.
Either "roots" or "solutions".
Such an equation has a total of six roots; the number of real roots must needs be even. Thus, depending on the specific equation, the number of real roots may be zero, two, four, or six.
It can tell you three things about the quadratic equation:- 1. That the equation has 2 equal roots when the discriminant is equal to zero. 2. That the equation has 2 distinctive roots when the discriminant is greater than zero. £. That the equation has no real roots when the discriminant is less than zero.