It will then have 2 different roots
If the discriminant is zero than it will have have 2 equal roots
That its roots (solutions) are coincident.
C
what math flowchart can make it true
Given the quadratic equation ax^2 + bx + c =0, where a, b, and c are real numbers: (The discriminant is equal to b^2 - 4ac) If b^2 - 4ac < 0, there are two conjugate imaginary roots. If b^2 - 4ac = 0, there is one real root (called double root) If b^2 - 4ac > 0, there are two different real roots. In the special case when the equation has integral coefficients (means that all coefficients are integers), and b^2 - 4ac is the square of an integer, the equation has rational roots. That is , if b^2 - 4ac is the square of an integer, then ax^2 + bx + c has factors with integral coefficients. * * * * * Strictly speaking, the last part of the last sentence is not true. For example, consider the equation 4x2 + 8x + 3 = 0 the discriminant is 16, which is a perfect square and the equation can be written as (2x+1)*(2x+3) = 0 To that extent the above is correct. However, the equation can also be written, in factorised form, as (x+1/2)*(x+3/2) = 0 Not all integral coefficients.
true.
If the discriminant of a quadratic equation is positive, it indicates that the equation has two distinct real roots. This means that the graph of the equation intersects the x-axis at two points. A positive discriminant also suggests that the solutions are not repeated and that the parabola opens either upward or downward, depending on the leading coefficient.
It has one real solution.
a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.
It discriminates between the conditions in which a quadratic equation has 0, 1 or 2 real roots.
The discriminant must be a perfect square or a square of a rational number.
The equation must be written in the form ( ax^2 + bx + c = 0 ), where ( a \neq 0 ). This is the standard form of a quadratic equation. If the equation is not in this form, you may need to rearrange it before applying the quadratic formula.
In that case, the discriminant is not a perfect square.
There are two complex solutions.
That its roots (solutions) are coincident.
That its roots (solutions) are coincident.
C
It is finding the values of the variable that make the quadratic equation true.