Study guides

☆☆

Q: How many combinations of 4 students can you get from a 5 person swimming team?

Write your answer...

Submit

Still have questions?

Related questions

The answer is 4,960.

9 combinations - the key person and one of the remaining nine.

There are 4845 ways to choose 4 people out of 20 20 choose 4 = 20! / (4!16!)

The answer is 30C4 = 30*29*28*27/(4*3*2*1) = 27,405

An average person will burn 2666 kilojoules per hour if swimming.

3

20

There are 84 different combinations possible for the committee of 6, taken from4 students and 5 teachers.1.- The committee with 4 students has 4C4 number of combinations of 4 students out of 4 and 5C2 number of combinations of 2 teachers out of 5 to be combined with. The product of these two give the number of different combinations possible in a committee formed by 4 students and 2 teachers.2.- The committee with 3 students has 4C3 number of combinations of 3 students out of 4 and 5C3 number of combinations of 3 teachers out of 5 to be combined with. The product of these two give the number of different combinations possible in a committee formed by 3 students and 6 teachers.3.- The committee with 2 students has 4C2 number of combinations of 2 studentsout of 4 and 5C4 number of combinations of 4 teachers out of 5 to be combined with. The product of these two give the number of different combinations possible in a committee formed by 2 students and 4 teachers.4.- The committee with 1 student has 4C1 number of combinations of 1 student out of 4 students and 5C5 number of combinations of 5 teachers out of 5 to be combined with. The product of these two give the number of different combinations possible in a committee formed by 1 student and 5 teachers.We now add up all possible combinations:4C4âˆ™5C2 + 4C3âˆ™5C3 + 4C2âˆ™5C4 + 4C1âˆ™5C5 = 1(10) + 4(10) +6(5) + 4(1) = 84There are 84 different combinations possible for the committee of 6, taken from4 students and 5 teachers.[ nCr = n!/(r!(n-r)!) ][ n! = n(n-1)(n-2)âˆ™âˆ™âˆ™(3)(2)(1) ]

The answer is 86 because 100 studets were asked and 14 more students chose soccer than swimming so 100-14=86, then halve 86 to make 43 and 43, then add 43 and 14 to make 57 for soccer. So 57 people chose soccer, and 43 people chose swimming. All together it equals to 100 students.

I think there are 88 different combinations of coins that can make up 66 cents.

There could be many different symbols. It probably looks like a person swimming. It could be different though.

2 adults, 6 students 4 adults, 3 students 6 adults 9 students 4 combinations

People also asked