If the inequality includes 'or equal' then use a solid dot [the value is included]. If it doesn't use 'or equal' then use the open dot.
The line is dotted when the inequality is a strict inequality, ie it is either "less than" (<) or "greater than" (>). If there is an equality in the inequality, ie "less than or equal to" (≤), "greater than or equal to" (≥) or "equal to" (=) then the line is drawn as a solid line.
if you have y <= f(x), then graph the function y = f(x) with a solid line, then shade everything below that graph.
I think you would use an average two step equation to solve. Graph on a number line. If it was -2, go over 2 to the left, and make a dot. It is hollow or solid. It is solid if there is a line beneath the less than or greater than sign indicating that it is equal to....
Vertex
If it is <= or >=
The graph of an inequality is a region, not a line.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
To accurately determine which inequality is shown in the graph, I would need to see the graph itself. However, if the graph displays a shaded region above a line, it typically represents a "greater than" inequality (e.g., y > mx + b), while shading below the line indicates a "less than" inequality (e.g., y < mx + b). Additionally, if the line is solid, it indicates that the points on the line are included in the solution (≥ or ≤), whereas a dashed line indicates they are not (>, <).
If the points that are ON the line satisfy the inequality then the line should be solid. Otherwise it should be dotted. Another way of putting that is, if the inequality is given in terms of ≤ or ≥, then use a solid line. If they are < or > use a dotted line.
FALSE
The line is dotted when the inequality is a strict inequality, ie it is either "less than" (<) or "greater than" (>). If there is an equality in the inequality, ie "less than or equal to" (≤), "greater than or equal to" (≥) or "equal to" (=) then the line is drawn as a solid line.
if you have y <= f(x), then graph the function y = f(x) with a solid line, then shade everything below that graph.
To graph a two-variable linear inequality, first convert the inequality into an equation by replacing the inequality sign with an equal sign, which gives you the boundary line. Next, graph this line using a solid line for ≤ or ≥ and a dashed line for < or >. Then, determine which side of the line to shade by testing a point not on the line (usually the origin) to see if it satisfies the inequality. Finally, shade the appropriate region to represent all the solutions to the inequality.
The graph of a line represents a linear equation in two variables, typically in the form (y = mx + b), where (m) is the slope and (b) is the y-intercept. In contrast, the graph of an inequality in two variables, such as (y < mx + b), includes a region that represents all the solutions to the inequality, often shaded to indicate the area where the inequality holds true. The boundary line for the inequality may be solid (for (\leq) or (\geq)) or dashed (for (<) or (>)). Thus, while both graphs can involve similar lines, their interpretations and representations differ significantly.
To graph linear inequalities, you first identify the boundary line by rewriting the inequality in slope-intercept form (y = mx + b) and plotting the corresponding linear equation. If the inequality is strict (e.g., < or >), you use a dashed line to indicate that points on the line are not included. For non-strict inequalities (e.g., ≤ or ≥), a solid line is used. Finally, you shade the appropriate region of the graph to represent the solutions that satisfy the inequality, based on whether the inequality is greater than or less than.
To determine whether to use a solid or dotted line for a given inequality, check if the inequality includes equal to (≥ or ≤) or not (>) or (<). If it includes equal to, use a solid line; if not, use a dotted line. For the solution area, if the inequality is greater than (>) or greater than or equal to (≥), the solution lies above the line; for less than (<) or less than or equal to (≤), it lies below the line.
I think you would use an average two step equation to solve. Graph on a number line. If it was -2, go over 2 to the left, and make a dot. It is hollow or solid. It is solid if there is a line beneath the less than or greater than sign indicating that it is equal to....