(1+x)/(x^2+1)
Let x^2+1 =u
2x dx = du
x dx = du/2
(1+x) / (x^2+1) = 1/(x^2+1) + x / (x^2+1)
Integral of x dx / (x^2+1) = (1/2) integral du / u = 1/2 ln|u| --(1)
Integral of 1 / (x^2+1) = arctan(x) --(2)
Adding (1) and (2)
Integral (1+x)/(x^2+1) = (1/2) ln(x^2+1) + arctan(x) + C
Chat with our AI personalities