To convert the vertex form ( y = 4(x - 2)^2 - 1 ) to standard form, expand the equation. Start by expanding ( (x - 2)^2 ) to get ( x^2 - 4x + 4 ). Then, substitute this back into the equation: ( y = 4(x^2 - 4x + 4) - 1 ), which simplifies to ( y = 4x^2 - 16x + 16 - 1 ). Therefore, the standard form is ( y = 4x^2 - 16x + 15 ).
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
To find the vertex of a parabola in standard form, which is given by the equation ( y = ax^2 + bx + c ), you can use the formula for the x-coordinate of the vertex: ( x = -\frac{b}{2a} ). Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. The vertex will then be at the point ( (x, y) ).
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
The equation of a parabola with vertex at (0, 0) and a directrix of ( x = -3 ) opens to the right, as the directrix is a vertical line. The distance from the vertex to the directrix is 3 units. The standard form of the equation for a horizontally-opening parabola is given by ( y^2 = 4px ), where ( p ) is the distance from the vertex to the directrix. Therefore, with ( p = 3 ), the equation is ( y^2 = 12x ).
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.
The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.
To find the vertex of a parabola in standard form, which is given by the equation ( y = ax^2 + bx + c ), you can use the formula for the x-coordinate of the vertex: ( x = -\frac{b}{2a} ). Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. The vertex will then be at the point ( (x, y) ).
-2
Assuming the vertex is 0,0 and the directrix is y=4 x^2=0
A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.
The equation of a parabola with vertex at (0, 0) and a directrix of ( x = -3 ) opens to the right, as the directrix is a vertical line. The distance from the vertex to the directrix is 3 units. The standard form of the equation for a horizontally-opening parabola is given by ( y^2 = 4px ), where ( p ) is the distance from the vertex to the directrix. Therefore, with ( p = 3 ), the equation is ( y^2 = 12x ).
To write the equation of a parabola with its vertex at the origin (0, 0) and a focus at (0, 60), you first identify the orientation of the parabola. Since the focus is above the vertex, the parabola opens upwards. The standard form of the equation for a parabola that opens upwards is ( y = \frac{1}{4p}x^2 ), where ( p ) is the distance from the vertex to the focus. Here, ( p = 60 ), so the equation becomes ( y = \frac{1}{240}x^2 ).
In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.
To write an equation for a parabola in standard form, use the format ( y = a(x - h)^2 + k ) for a vertical parabola or ( x = a(y - k)^2 + h ) for a horizontal parabola. Here, ((h, k)) represents the vertex of the parabola, and (a) determines the direction and width of the parabola. If (a > 0), the parabola opens upwards (or to the right), while (a < 0) indicates it opens downwards (or to the left). To find the specific values of (h), (k), and (a), you may need to use given points or the vertex of the parabola.
To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.