answersLogoWhite

0

In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Geometry

What different information do you get from vertex form and quadratic equation in standard form?

The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.


What is the focus of a parabola?

The focus of a parabola is a fixed point that lies on the axis of the parabola "p" units from the vertex. It can be found by the parabola equations in standard form: (x-h)^2=4p(y-k) or (y-k)^2=4p(x-h) depending on the shape of the parabola. The vertex is defined by (h,k). Solve for p and count that many units from the vertex in the direction away from the directrix. (your focus should be inside the curve of your parabola)


What is the equation for vertex form?

The vertex form for a quadratic equation is y=a(x-h)^2+k.


How do you find the vertex from a quadratic equation in standard form?

look for the interceptions add these and divide it by 2 (that's the x vertex) for the yvertex you just have to fill in the x(vertex) however you can also use the formula -(b/2a)


How do you graph a quadratic equation?

A quadratic equation is an equation with the form: y=Ax2+Bx+C The most important point when graphing a parabola (the shape formed by a quadratic) is the vertex. The vertex is the maximum or minimum of the parabola. The x value of the vertex is equal to -B/(2A). Once you have the x value, just plug it back into the original equation to get the corresponding y value. The resulting ordered pair is the location of the vertex. A parabola will be concave up (pointed downward) if A is +. It will be concave down (pointed upward) if A is -. It is often helpful to find the zeroes of a function when graphing. This can be done by factoring or using the quadratic formula. For every n units away from the vertex on the x-axis, the corresponding y value goes up (or down) by n2*A. Parabolas are symetrical along the vertex, which means that if one point is n units from the vertex, the point -n units from the vertex has the same y value. As an example take the following quadratic: 2x2-8x+3 A=2, B=-8, and C=3 The x value of the vertex is -B/2A=-(-8)/(2*2)=2 By plugging 2 into the original equation we get that the vertex is at (2,-5) 3 units to the right (x=5) has a y value of -5+32*2=13. This means that 3 units to the left (x=-1) has the same y value (-1,13). If you need a clearer explanation, ask a math teacher.

Related Questions

What different information do you get from vertex form and quadratic equation in standard form?

The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.


What is the difference between standard form and vertex form?

The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.


The vertex of the parabola below is at the point (-4-2) which equation below could be one for parabola?

-2


What is the standard form of the equation of the parabola with vertex 00 and directrix y4?

Assuming the vertex is 0,0 and the directrix is y=4 x^2=0


What is a quadratic equation in vertex form for a parabola with vertex (11 -6)?

A quadratic equation in vertex form is expressed as ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex of the parabola. For a parabola with vertex at ((11, -6)), the equation becomes ( y = a(x - 11)^2 - 6 ). The value of (a) determines the direction and width of the parabola. Without additional information about the parabola's shape, (a) can be any non-zero constant.


How do you write an equation for a parabola in standard form?

To write an equation for a parabola in standard form, use the format ( y = a(x - h)^2 + k ) for a vertical parabola or ( x = a(y - k)^2 + h ) for a horizontal parabola. Here, ((h, k)) represents the vertex of the parabola, and (a) determines the direction and width of the parabola. If (a > 0), the parabola opens upwards (or to the right), while (a < 0) indicates it opens downwards (or to the left). To find the specific values of (h), (k), and (a), you may need to use given points or the vertex of the parabola.


The vertex of the parabola below is at the point (5 -3). Which of the equations below could be the one for this parabolaus anything?

To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.


Find equation what parabola its vertex is 0 0 and it passes through point 2 12 express the equation in standard form?

Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2


How do you rewrite the equation of a parabola in standard form?

To rewrite the equation of a parabola in standard form, you need to express it as ( y = a(x - h)^2 + k ) for a vertically oriented parabola or ( x = a(y - k)^2 + h ) for a horizontally oriented parabola. Here, ( (h, k) ) represents the vertex of the parabola, and ( a ) determines its direction and width. You can achieve this by completing the square on the quadratic expression.


The vertex form of the equation of a parabola is . What is the standard form of the equation?

To convert the vertex form of a parabola, which is typically expressed as (y = a(x-h)^2 + k), into standard form (y = ax^2 + bx + c), you need to expand the equation. Start by squaring the binomial ((x-h)), which gives (x^2 - 2hx + h^2). Then, distribute the coefficient (a) and combine like terms to achieve the standard form. The resulting equation will be (y = ax^2 - 2ahx + (ah^2 + k)).


What equation describes a parabola that opens up or down and whose vertex at the point (hv)?

This is called the 'standard form' for the equation of a parabola:y =a (x-h)2+vDepending on whether the constant a is positive or negative, the parabola will open up or down.


What is an equation of the parabola in vertex form that passes through (13 8) and has vertex (3 2).?

please help