Want this question answered?

Q: What is the equation of a parabola with vertex (0 0) and directrix x -3.?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Assuming the vertex is 0,0 and the directrix is y=4 x^2=0

There is not enough information. You need either the directrix or vertex (or some other item of information).

A parabola with an equation, y2 = 4ax has its vertex at the origin and opens to the right. It's not just the '4' that is important, it's '4a' that matters. This type of parabola has a directrix at x = -a, and a focus at (a, 0). By writing the equation as it is, the position of the directrix and focus are readily identifiable. For example, y2 = 2.4x doesn't say a great deal. Re-writing the equation of the parabola as y2 = 4*(0.6)x tells us immediately that the directrix is at x = -0.6 and the focus is at (0.6, 0)

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?

Related questions

Assuming the vertex is 0,0 and the directrix is y=4 x^2=0

There is not enough information. You need either the directrix or vertex (or some other item of information).

A parabola with an equation, y2 = 4ax has its vertex at the origin and opens to the right. It's not just the '4' that is important, it's '4a' that matters. This type of parabola has a directrix at x = -a, and a focus at (a, 0). By writing the equation as it is, the position of the directrix and focus are readily identifiable. For example, y2 = 2.4x doesn't say a great deal. Re-writing the equation of the parabola as y2 = 4*(0.6)x tells us immediately that the directrix is at x = -0.6 and the focus is at (0.6, 0)

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y

The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?

The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4. The coefficient of the squared term in the parabolas equation is 7

In classic geometry, it opens down when the directrix is above the focus.In analytical (coordinate) geometry, if the equation of the parabola isy = ax^2 + bx + c, it opens down if a < 0.

A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (2, -1), and a point on it is (5, 0) → 0 = a(5 - 2)² + -1 → 0 = a(3)² -1 → 1 = 9a → a = 1/9 → The coefficient of the x² term is 1/9

10

Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2

the equation of a parabola is: y = a(x-h)^2 + k *h and k are the x and y intercepts of the vertex respectively * x and y are the coordinates of a known point the curve passes though * solve for a, then plug that a value back into the equation of the parabola with out the coordinates of the known point so the equation of the curve with the vertex at (0,3) passing through the point (9,0) would be.. 0 = a (9-0)^2 + 3 = 0 = a (81) + 3 = -3/81 = a so the equation for the curve would be y = -(3/81)x^2 + 3