True
False
If the polar coordinates of a point P are (r,a) then the rectangular coordinates of P are x = rcos(a) and y = rsin(a).
False
False
False
Some of them but not all. For example, uniqueness. The rectangular coordinates (x, y) represent a different point if either x or y is changed. This is also true for polar coordinate (r, a) but only if r > 0. For r = 0 the coordinates represent the same point, whatever a is. Thus (x, y) has a 1-to-1 mapping onto the plane but the polar coordinates don't.
You substitute the coordinates of the point in the equation. If the result is true then the point is a solution and if it is false it is not a solution.
First, a coordinate. A coordinate is a number. It labels a point on a line.Second, a coordinate axis is a line with coordinates.to label a point in a plane (a flat surface), we need more than one coordinate axis, and we place a second at right angles to the first.Those axes are called rectangular coordinate axes, because they are at right angles to one another. The coordinates on them are called rectangular coordinates. They are also called Cartesian coordinates.
Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.
The slope of a line and the coordinates of a point on the line.The slope of a line and the coordinates of a point on the line.The slope of a line and the coordinates of a point on the line.The slope of a line and the coordinates of a point on the line.
Because the cordinate system is set up to provide a unique reference to every point on the planet.
Yes if it is a straight line equation