Cos x is the ratio of the adjacent side to the hypotenuse. cos x = (adjacent)/(hypotenuse) = a/c Tan x is the opposite side to the adjacent side. tan x = (opposite) / (adjacent) = b/a If you do (b/c)/(a/c), you will get b/a which is tan x. So tan x can be expressed as the ratio of sin to cos. tan x = sin x/cos x.
cosx=β
2
1
β
β΄secx=
cosx
1
β
=β2
Now β΅sin
2
x+cos
2
x=1
βΉsin
2
x=1βcos
2
xβΉsin
2
x=1β
4
1
β
=
4
3
β
βΉsinx=Β±
2
3
β
β
Since x lies in third quadrant, the value of sinx will be negative.
β΄sinx=β
2
3
β
β
cscx=
sinx
1
β
=β
3
β
2
β
tanx=
cosx
sinx
β
=
(β
2
1
β
)
(β
2
3
β
β
)
β
=
3
β
cotx=
tanx
1
β
=
3
β
1
β
sin is short for sine. Sin(x) means the ratio of the side of a right triange opposite the angle 'x' divided by the length of the hypotenuse. cos is short for cosine. Cos(x) is equal to the similar ratio of the side adjacent to the angle 'x' divided by the length of the hypotenuse. tan is short for tangent. Tan(x) is equal to the ratio of the opposite side divided by the adjacent side. This is the same as sin(x)/cos(x).
If one of the other angles is x (degrees or radians in any units), then the ratio is sin(x) : cos(x).
The ratio is the M/cos(x). where M is the mass on which the force is acting and x is the angle between the direction of the force and the direction of the acceleration.
cos(x)-cos(x)sin2(x)=[cos(x)][1-sin2(x)]cos(x)-cos(x)sin2(x)=[cos(x)][cos2(x)]cos(x)-cos(x)sin2(x)=cos3(x)
No. Cos squared x is not the same as cos x squared. Cos squared x means cos (x) times cos (x) Cos x squared means cos (x squared)
sec x = 1/cos x sec x cos x = [1/cos x] [cos x] = 1
cos 2x = cos2 x - sin2 x = 2 cos2 x - 1; whence, cos 2x / cos x = 2 cos x - (1 / cos x) = 2 cos x - sec x.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
Prove that tan(x)sin(x) = sec(x)-cos(x) tan(x)sin(x) = [sin(x) / cos (x)] sin(x) = sin2(x) / cos(x) = [1-cos2(x)] / cos(x) = 1/cos(x) - cos2(x)/ cos(x) = sec(x)-cos(x) Q.E.D
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True
sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x